-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels.py
772 lines (690 loc) · 27.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
from typing import Dict, List, Union
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from copy import deepcopy
import math
class ResourceAllocation:
def __init__(self, cpu: float = 0, gpu: float = 0) -> None:
# For now only one type CPU/GPU allocation is allowed
if cpu != 0 and gpu != 0:
raise ValueError("For now only one of the CPU or GPU allocation is allowed")
self.cpu = cpu
self.gpu = gpu
class Profile:
def __init__(
self,
batch: int,
latency: float,
measured: bool = True,
measured_throughput=None,
) -> None:
self.batch = batch
self.latency = latency
self.measured = measured
if measured_throughput is not None:
self.measured_throughput = measured_throughput
@property
def throughput(self):
if self.measured:
throughput = self.measured_throughput
else:
throughput = (1 / self.latency) * self.batch
return throughput
def __eq__(self, other):
if not isinstance(other, int):
raise TypeError("batch size variables should be int")
if other == self.batch:
return True
return False
class Model:
def __init__(
self,
name: str,
resource_allocation: ResourceAllocation,
measured_profiles: List[Profile],
only_measured_profiles: bool,
accuracy: float,
) -> None:
self.resource_allocation = resource_allocation
self.measured_profiles = measured_profiles
self.measured_profiles.sort(key=lambda profile: profile.batch)
self.accuracy = accuracy / 100
self.name = name
self.only_measured_profiles = only_measured_profiles
self.profiles, self.latency_model_params = self.regression_model()
def regression_model(self) -> Union[List[Profile], Dict[str, float]]:
"""
interapolate the latency for unknown batch sizes
"""
train_x = np.array(
list(map(lambda l: l.batch, self.measured_profiles))
).reshape(-1, 1)
train_y = np.array(
list(map(lambda l: l.latency, self.measured_profiles))
).reshape(-1, 1)
if self.only_measured_profiles:
all_x = train_x
else:
all_x = np.arange(self.min_batch, self.max_batch + 1)
# HACK all the data from the latency model and not using
# measured data
# test_x = all_x[~np.isin(all_x, train_x)].reshape(-1, 1)
test_x = all_x.reshape(-1, 1)
profiles = []
if self.only_measured_profiles:
for index, x, y in zip(
range(len(all_x)), train_x.reshape(-1), train_y.reshape(-1)
):
profiles.append(
Profile(
batch=x,
latency=self.measured_profiles[index].latency,
measured=True,
measured_throughput=self.measured_profiles[
index
].measured_throughput,
)
)
model_parameters = {"coefficients": None, "intercept": None}
else:
poly_features = PolynomialFeatures(degree=2)
train_x_poly = poly_features.fit_transform(train_x)
test_x_poly = poly_features.transform(test_x)
latency_model = LinearRegression()
latency_model.fit(train_x_poly, train_y)
test_y = latency_model.predict(test_x_poly)
# TODO add a hueristic to remove the <0 latency values
# we set polynomial as reference but for small values
# polynomial will result into negative values
# if there is a negative values in the polynomial results
# we fill it with linear model resutls
# test_x = all_x.reshape(-1, 1)
latency_model_linear = LinearRegression()
latency_model_linear.fit(train_x, train_y)
test_y_linear = latency_model_linear.predict(test_x)
for index, lateny in enumerate(test_y):
if lateny < 0:
test_y[index] = test_y_linear[index]
predicted_profiles = []
for index, x, y in zip(
range(len(all_x)), test_x.reshape(-1), test_y.reshape(-1)
):
predicted_profiles.append(
Profile(
batch=x, latency=y, measured=False, measured_throughput=None
)
)
profiles: List[Profile] = predicted_profiles
profiles.sort(key=lambda profile: profile.batch)
# Extract coefficients and intercept
coefficients = latency_model.coef_[0]
intercept = latency_model.intercept_
model_parameters = {"coefficients": coefficients, "intercept": intercept}
# HACK only power of twos for now
# if not self.only_measured_profiles:
selected_profiles_indices = [
2**i - 1 for i in range(int(math.log2(len(profiles))) + 1)
]
profiles = [
profiles[index]
for index in selected_profiles_indices
if index < len(profiles)
]
return profiles, model_parameters
@property
def profiled_batches(self):
batches = [profile.batch for profile in self.measured_profiles]
return batches
@property
def min_batch(self):
return min(self.profiled_batches)
@property
def max_batch(self):
return max(self.profiled_batches)
@property
def max_batch(self):
return max(self.profiled_batches)
class Task:
def __init__(
self,
name: str,
available_model_profiles: List[Model],
active_variant: str,
active_allocation: ResourceAllocation,
replica: int,
batch: int,
allocation_mode: str,
threshold: int,
sla_factor: int,
normalize_accuracy: bool,
gpu_mode: False,
) -> None:
self.available_model_profiles = available_model_profiles
self.active_variant = active_variant
self.active_allocation = active_allocation
self.initial_allocation = active_allocation
self.replicas = replica
self.batch = batch
self.replicas = replica
self.gpu_mode = gpu_mode
self.normalize_accuracy = normalize_accuracy
self.threshold = threshold
self.name = name
self.sla_factor = sla_factor
self.allocation_mode = allocation_mode
for variant_index, variant in enumerate(self.available_model_profiles):
if variant.name == active_variant:
if self.gpu_mode:
if self.active_allocation.gpu == variant.resource_allocation.gpu:
self.active_variant_index = variant_index
break
else:
if self.active_allocation.cpu == variant.resource_allocation.cpu:
self.active_variant_index = variant_index
break
else: # no-break
raise ValueError(
f"no matching profile for the variant {active_variant} and allocation"
f" of cpu: {active_allocation.cpu} and gpu: {active_allocation.gpu}"
)
def remove_model_profiles_by_name(self, model_name: str):
self.available_model_profiles = [
profile
for profile in self.available_model_profiles
if profile.name != model_name
]
def get_all_models_by_name(self, model_name: str):
return [
profile
for profile in self.available_model_profiles
if profile.name == model_name
]
def add_model_profile(self, model: Model):
self.available_model_profiles.append(model)
def add_model_profiles(self, model: List[Model]):
self.available_model_profiles += model
def model_switch(self, active_variant: str) -> None:
"""
changes variant under specific allocation
"""
for variant_index, variant in enumerate(self.available_model_profiles):
if variant.name == active_variant:
if self.gpu_mode:
if self.active_allocation.gpu == variant.resource_allocation.gpu:
self.active_variant_index = variant_index
self.active_variant = active_variant
break
else:
if self.active_allocation.cpu == variant.resource_allocation.cpu:
self.active_variant_index = variant_index
self.active_variant = active_variant
break
else: # no-break
raise ValueError(
f"no matching profile for the variant {active_variant} and allocation"
f"of cpu: {self.active_allocation.cpu} and gpu: {self.active_allocation.gpu}"
)
if self.allocation_mode == "base":
self.set_to_base_allocation()
@property
def num_variants(self):
return len(self.variant_names)
@property
def sla(self) -> Dict[str, ResourceAllocation]:
models = {key: [] for key in self.variant_names}
# 1. filter out models
for model_variant in self.variant_names:
for allocation in self.available_model_profiles:
if allocation.name == model_variant:
models[model_variant].append(allocation)
# 2. find variant SLA
model_slas = {}
for model, allocation in models.items():
# finding sla of each model
# sla is latency of minimum batch
# under minimum resource multiplied by
# a given scaling factor
# since allocations are sorted the first
# one will be the one with maximum resource req
sla = allocation[-1].profiles[0].latency * self.sla_factor
model_slas[model] = sla
task_sla = (sum(model_slas.values()) / len(model_slas.values())) * 5
# task_sla = min(model_slas.values())
return task_sla
@property
def base_allocations(self) -> Dict[str, ResourceAllocation]:
if self.allocation_mode != "base":
return None
models = {key: [] for key in self.variant_names}
# TOOD change here
# 1. filter out models
for model_variant in self.variant_names:
for allocation in self.available_model_profiles:
if allocation.name == model_variant:
models[model_variant].append(allocation)
base_allocation = {}
check_both = {}
check_sla = {}
check_throughput = {}
for model_variant, allocations in models.items():
check_both[model_variant] = {}
check_sla[model_variant] = {}
check_throughput[model_variant] = {}
# finding the minimum allocation that can respond
# to the threshold
# the profiles are sorted therefore therefore
# we iterate from the first profile
profiled_batches = allocations[0].profiled_batches
for allocation in allocations:
# check if the max batch size throughput
# can reponsd to the threshold
check_both[model_variant][allocation.resource_allocation.cpu] = {}
check_sla[model_variant][allocation.resource_allocation.cpu] = {}
check_throughput[model_variant][allocation.resource_allocation.cpu] = {}
# for profile_index in range(len(profiled_batches)-1, -1, -1):
for profile_index in range(0, len(profiled_batches)):
if (
allocation.profiles[profile_index].throughput >= self.threshold
and allocation.profiles[profile_index].latency <= self.sla
):
base_allocation[model_variant] = deepcopy(
allocation.resource_allocation
)
check_both[model_variant][allocation.resource_allocation.cpu][
profiled_batches[profile_index]
] = True
else:
check_both[model_variant][allocation.resource_allocation.cpu][
profiled_batches[profile_index]
] = False
if allocation.profiles[profile_index].throughput >= self.threshold:
check_throughput[model_variant][
allocation.resource_allocation.cpu
][profiled_batches[profile_index]] = True
else:
check_throughput[model_variant][
allocation.resource_allocation.cpu
][profiled_batches[profile_index]] = False
if allocation.profiles[profile_index].latency <= self.sla:
check_sla[model_variant][allocation.resource_allocation.cpu][
profiled_batches[profile_index]
] = True
else:
check_sla[model_variant][allocation.resource_allocation.cpu][
profiled_batches[profile_index]
] = False
allocation_num_sustains = {}
for model, allocations in check_both.items():
allocation_num_sustains[model] = {}
for allocation, batch_can_sustain in allocations.items():
allocation_num_sustains[model][allocation] = sum(
batch_can_sustain.values()
)
# TODO 1. add node orders
# 2. make the heuristic
# 3. a test
# 4. if worked, document up
variant_orders = list(self.variants_accuracies.keys()) # TODO to be fixed
base_allocation = {}
indicator = 0
# former_varaint_indicator = 0
sample_allocation = list(allocation_num_sustains[variant_orders[0]].keys())
indicator_to_allocation = {
key: value
for key, value in zip(range(len(sample_allocation)), sample_allocation)
}
for model in variant_orders:
allocation_num_sustain = allocation_num_sustains[model]
base_allocation[model] = None
while base_allocation[model] == None:
if indicator > len(sample_allocation):
base_allocation[model] = None
break
if model == variant_orders[0]:
if allocation_num_sustain[indicator_to_allocation[indicator]] != 0:
base_allocation[model] = ResourceAllocation(
cpu=indicator_to_allocation[indicator]
)
else:
indicator += 1
continue
else:
# if indicator == len(sample_allocation) - 1:
# base_allocation[model] = None
# break
if (
indicator != len(sample_allocation) - 1
and allocation_num_sustain[
indicator_to_allocation[indicator + 1]
]
> allocation_num_sustain[indicator_to_allocation[indicator]]
):
indicator += 1
if allocation_num_sustain[indicator_to_allocation[indicator]] == 0:
if indicator == len(sample_allocation) - 1:
base_allocation[model] = None
break
else:
indicator += 1
continue
else:
base_allocation[model] = ResourceAllocation(
cpu=indicator_to_allocation[indicator]
)
for model_variant, allocation in base_allocation.items():
if allocation == None:
raise ValueError(
f"No responsive model profile to threshold {self.threshold}"
f" or model sla {self.sla} was found"
f" for model variant {model_variant} "
"consider either changing the the threshold or "
f"sla factor {self.sla_factor}"
)
return base_allocation
def set_to_base_allocation(self):
self.change_allocation(
active_allocation=self.base_allocations[self.active_variant]
)
def change_allocation(self, active_allocation: ResourceAllocation) -> None:
"""
change allocation of a specific variant
"""
for variant_index, variant in enumerate(self.available_model_profiles):
if variant.name == self.active_variant:
if self.gpu_mode:
if active_allocation.gpu == variant.resource_allocation.gpu:
self.active_variant_index = variant_index
self.active_allocation = active_allocation
break
else:
if active_allocation.cpu == variant.resource_allocation.cpu:
self.active_variant_index = variant_index
self.active_allocation = active_allocation
break
else: # no-break
raise ValueError(
f"no matching profile for the variant {self.active_variant} and allocation"
f"of cpu: {active_allocation.cpu} and gpu: {active_allocation.gpu}"
)
def re_scale(self, replica) -> None:
self.replicas = replica
def change_batch(self, batch) -> None:
self.batch = batch
@property
def variants_accuracies(self) -> Dict[str, float]:
"""create all the accuracies for each task
Returns:
Dict[str, float]: variant accuracies
"""
variants_accuracies = {}
for profile in self.available_model_profiles:
variants_accuracies[profile.name] = profile.accuracy
variants_accuracies = dict(
sorted(variants_accuracies.items(), key=lambda l: l[1])
)
return variants_accuracies
@property
def variants_accuracies_normalized(self) -> Dict[str, float]:
"""create normalized accuracies for each task
Returns:
Dict[str, float]: varaint accuracies
"""
variants = []
accuracies = []
for variant, accuracy in self.variants_accuracies.items():
variants.append(variant)
accuracies.append(accuracy)
variants = [variant for _, variant in sorted(zip(accuracies, variants))]
accuracies.sort()
if len(accuracies) == 1:
accuracies_normalized = [1]
else:
accuracies_normalized = (
np.arange(len(accuracies)) / (len(accuracies) - 1)
).tolist()
variants_accuracies_normalized = {
variant: accuracy_normalized
for variant, accuracy_normalized in zip(variants, accuracies_normalized)
}
return variants_accuracies_normalized
@property
def active_model(self) -> Model:
return self.available_model_profiles[self.active_variant_index]
@property
def latency_model_params(self) -> Model:
return self.available_model_profiles[
self.active_variant_index
].latency_model_params
@property
def cpu(self) -> int:
if self.gpu_mode:
raise ValueError("The node is on gpu mode")
else:
return self.active_model.resource_allocation.cpu
@property
def gpu(self) -> float:
if self.gpu_mode:
return self.active_model.resource_allocation.gpu
else:
return 0
@property
def cpu_all_replicas(self) -> int:
if self.gpu_mode:
raise ValueError("The node is on gpu mode")
else:
return self.active_model.resource_allocation.cpu * self.replicas
@property
def gpu_all_replicas(self) -> float:
if self.gpu_mode:
return self.active_model.resource_allocation.gpu * self.replicas
return 0
@property
def queue_latency(self) -> float:
# TODO TEMP
queue_latency = 0
return queue_latency
@property
def model_latency(self) -> float:
latency = next(
filter(
lambda profile: profile.batch == self.batch, self.active_model.profiles
)
).latency
return latency
@property
def latency(self) -> float:
latency = self.model_latency + self.queue_latency
return latency
@property
def throughput(self) -> float:
throughput = next(
filter(
lambda profile: profile.batch == self.batch, self.active_model.profiles
)
).throughput
return throughput
@property
def measured(self) -> bool:
measured = next(
filter(
lambda profile: profile.batch == self.batch, self.active_model.profiles
)
).measured
return measured
@property
def throughput_all_replicas(self):
return self.throughput * self.replicas
@property
def accuracy(self):
if self.normalize_accuracy:
return self.variants_accuracies_normalized[self.active_variant]
else:
return self.active_model.accuracy
@property
def variant_names(self):
return list(set(map(lambda l: l.name, self.available_model_profiles)))
@property
def batches(self):
batches = list(map(lambda l: l.batch, self.active_model.profiles))
return batches
@property
def resource_allocations_cpu_mode(self):
cpu_allocations = list(
set(
list(
map(
lambda l: l.resource_allocation.cpu,
self.available_model_profiles,
)
)
)
)
resource_allocations = list(
map(lambda l: ResourceAllocation(cpu=l), cpu_allocations)
)
return resource_allocations
@property
def resource_allocations_gpu_mode(self):
gpu_allocations = list(
set(
list(
map(
lambda l: l.resource_allocation.gpu,
self.available_model_profiles,
)
)
)
)
resource_allocations = list(
map(lambda l: ResourceAllocation(gpu=l), gpu_allocations)
)
return resource_allocations
class Pipeline:
def __init__(
self,
inference_graph: List[Task],
gpu_mode: bool,
sla_factor: int,
accuracy_method: str,
normalize_accuracy: bool,
) -> None:
self.inference_graph: List[Task] = inference_graph
self.gpu_mode = gpu_mode
self.sla_factor = sla_factor
self.accuracy_method = accuracy_method
self.normalize_accuracy = normalize_accuracy
if not self.gpu_mode:
for task in self.inference_graph:
if task.gpu_mode:
raise ValueError(
f"pipeline is deployed on cpu",
f"but task {task.name} is on gpu",
)
def add_task(self, task: Task):
self.inference_graph.append(task)
def remove_task(self):
self.inference_graph.pop()
@property
def stage_wise_throughput(self):
throughputs = list(
map(lambda l: l.throughput_all_replicas, self.inference_graph)
)
return throughputs
@property
def stage_wise_latencies(self):
latencies = list(map(lambda l: l.latency, self.inference_graph))
return latencies
@property
def sla(self):
sla = sum(map(lambda l: l.sla, self.inference_graph))
return sla
@property
def stage_wise_slas(self):
slas = dict(map(lambda l: (l.name, l.sla), self.inference_graph))
return slas
@property
def stage_wise_accuracies(self):
latencies = list(map(lambda l: l.accuracy, self.inference_graph))
return latencies
@property
def stage_wise_replicas(self):
replicas = list(map(lambda l: l.replicas, self.inference_graph))
return replicas
@property
def stage_wise_cpu(self):
cpu = []
for task in self.inference_graph:
if not task.gpu_mode:
cpu.append(task.cpu_all_replicas)
else:
cpu.append(0)
return cpu
@property
def stage_wise_gpu(self):
gpu = []
for task in self.inference_graph:
if task.gpu_mode:
gpu.append(task.gpu_all_replicas)
else:
gpu.append(0)
return gpu
@property
def stage_wise_task_names(self):
task_names = []
for task in self.inference_graph:
task_names.append(task.name)
return task_names
@property
def stage_wise_available_variants(self):
task_names = {}
for task in self.inference_graph:
task_names[task.name] = task.variant_names
return task_names
@property
def pipeline_cpu(self):
return sum(self.stage_wise_cpu)
@property
def pipeline_gpu(self):
return sum(self.stage_wise_gpu)
@property
def pipeline_latency(self):
return sum(self.stage_wise_latencies)
@property
def pipeline_accuracy(self):
tasks_accuracies = {}
for task in self.inference_graph:
acive_variant = task.active_variant
if self.normalize_accuracy:
accuracy = task.variants_accuracies_normalized[acive_variant]
else:
accuracy = task.variants_accuracies[acive_variant]
tasks_accuracies[acive_variant] = accuracy
if self.accuracy_method == "multiply":
accuracy = 1
for task, task_accuracy in tasks_accuracies.items():
accuracy *= task_accuracy
elif self.accuracy_method == "sum":
accuracy = 0
for task, task_accuracy in tasks_accuracies.items():
accuracy += task_accuracy
elif self.accuracy_method == "average":
accuracy = 0
for task, task_accuracy in tasks_accuracies.items():
accuracy += task_accuracy
accuracy /= len(self.inference_graph)
return accuracy
@property
def pipeline_throughput(self):
return min(self.stage_wise_throughput)
@property
def cpu_usage(self):
return sum(self.stage_wise_cpu)
@property
def gpu_usage(self):
return sum(self.stage_wise_gpu)
@property
def num_nodes(self):
return len(self.inference_graph)
def visualize(self):
pass