-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsim_adapter.py
344 lines (324 loc) · 14 KB
/
sim_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from typing import Dict, Literal, Union, Optional, Any
import numpy as np
from typing import List
import os
import sys
import time
import pandas as pd
import tensorflow as tf
from copy import deepcopy
from tensorflow.keras.models import load_model
from statsmodels.tsa.arima.model import ARIMA
# get an absolute path to the directory that contains parent files
project_dir = os.path.dirname(__file__)
sys.path.append(os.path.normpath(os.path.join(project_dir, "..")))
project_dir = os.path.dirname(__file__)
sys.path.append(os.path.normpath(os.path.join(project_dir, "..", "..")))
from optimizer import Optimizer, Pipeline
from experiments.utils.constants import LSTM_PATH, LSTM_INPUT_SIZE
from experiments.utils import logger
from optimizer.optimizer import Optimizer
class SimAdapter:
def __init__(
self,
pipeline_name: str,
pipeline: Pipeline,
node_names: List[str],
adaptation_interval: int,
optimization_method: Literal["gurobi", "brute-force"],
allocation_mode: Literal["base", "variable"],
only_measured_profiles: bool,
scaling_cap: int,
batching_cap: int,
alpha: float,
beta: float,
gamma: float,
num_state_limit: int,
monitoring_duration: int,
predictor_type: str,
baseline_mode: Optional[str] = None,
backup_predictor_type: str = "max",
backup_predictor_duration: int = 2,
replica_factor: int = 1,
) -> None:
"""
Args:
pipeline_name (str): name of the pipeline
pipeline (Pipeline): pipeline object
adaptation_interval (int): adaptation interval of the pipeline
optimization_method (Literal[gurobi, brute-force])
allocation_mode (Literal[base;variable])
only_measured_profiles (bool)
scaling_cap (int)
alpha (float): accuracy weight
beta (float): resource weight
gamma (float): batching weight
num_state_limit (int): cap on the number of optimal states
monitoring_duration (int): the monitoring
deamon observing duration
"""
self.pipeline_name = pipeline_name
self.pipeline = pipeline
self.node_names = node_names
self.adaptation_interval = adaptation_interval
self.backup_predictor_type = backup_predictor_type
self.backup_predictor_duration = backup_predictor_duration
self.optimizer = Optimizer(
pipeline=pipeline,
allocation_mode=allocation_mode,
complete_profile=False,
only_measured_profiles=only_measured_profiles,
random_sample=False,
baseline_mode=baseline_mode,
)
self.optimization_method = optimization_method
self.scaling_cap = scaling_cap
self.batching_cap = batching_cap
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.num_state_limit = num_state_limit
self.monitoring_duration = monitoring_duration
self.predictor_type = predictor_type
self.monitoring = Monitoring(
pipeline_name=self.pipeline_name,
sla=self.pipeline.sla,
base_allocations=self.optimizer.base_allocations(),
stage_wise_slas=self.pipeline.stage_wise_slas,
)
self.predictor = Predictor(
predictor_type=self.predictor_type,
backup_predictor_type=self.backup_predictor_type,
backup_predictor_duration=self.backup_predictor_duration,
)
self.replica_factor = replica_factor
def start_adaptation(
self, workload: List[int], initial_config: Dict[str, Dict[str, Union[str, int]]]
):
# 0. Check if pipeline is up
# 1. Use monitoring for periodically checking the status of
# the pipeline in terms of load
# 2. Watches the incoming load in the system
# 3. LSTM for predicting the load
# 4. Get the existing pipeline state, batch size, model variant and replicas per
# each node
# 5. Give the load and pipeline status to the optimizer
# 6. Compare the optimal solutions from the optimzer
# to the existing pipeline's state
# 7. Use the change config script to change the pipelien to the new config
time_interval = 0
timestep = 0
old_config = deepcopy(initial_config)
for timestep in range(
self.adaptation_interval, len(workload), self.adaptation_interval
):
time_interval += self.adaptation_interval
to_apply_config = None
to_save_config = None
objective = None
rps_series = workload[
max(0, timestep - self.monitoring_duration * 60) : timestep
]
self.update_recieved_load(all_recieved_loads=rps_series)
predicted_load = round(self.predictor.predict(rps_series))
logger.info("-" * 50)
logger.info(f"\nPredicted Load: {predicted_load}\n")
logger.info("-" * 50)
start = time.time()
optimal = self.optimizer.optimize(
optimization_method=self.optimization_method,
scaling_cap=self.scaling_cap,
batching_cap=self.batching_cap,
alpha=self.alpha,
beta=self.beta,
gamma=self.gamma,
arrival_rate=predicted_load,
num_state_limit=self.num_state_limit,
)
duration = time.time() - start
if "objective" in optimal.columns:
objective = optimal[
[
"accuracy_objective",
"resource_objective",
"batch_objective",
"objective",
]
]
new_configs = self.output_parser(optimal)
to_apply_config = self.choose_config(new_configs, old_config)
if to_apply_config is not None:
to_save_config = self.saving_config_builder(
to_apply_config=deepcopy(to_apply_config),
node_orders=deepcopy(self.node_names),
stage_wise_latencies=deepcopy(self.pipeline.stage_wise_latencies),
stage_wise_accuracies=deepcopy(self.pipeline.stage_wise_accuracies),
stage_wise_throughputs=deepcopy(
self.pipeline.stage_wise_throughput
),
)
self.monitoring.adaptation_step_report(
duration=duration,
to_apply_config=to_save_config,
objective=objective,
timestep=timestep,
time_interval=time_interval,
monitored_load=rps_series,
predicted_load=predicted_load,
)
old_config = deepcopy(to_apply_config)
def output_parser(self, optimizer_output: pd.DataFrame):
new_configs = []
for _, row in optimizer_output.iterrows():
config = {}
for task_id, task_name in enumerate(self.node_names):
config[task_name] = {}
config[task_name]["cpu"] = row[f"task_{task_id}_cpu"]
config[task_name]["replicas"] = int(row[f"task_{task_id}_replicas"])
config[task_name]["batch"] = int(row[f"task_{task_id}_batch"])
config[task_name]["variant"] = row[f"task_{task_id}_variant"]
new_configs.append(config)
return new_configs
def choose_config(
self, new_configs: List[Dict[str, Dict[str, Union[str, int]]]], current_config
):
# This should be from comparing with the
# current config
# easiest for now is to choose config with
# with the least change from former config
if current_config is None:
# if the current config is None just return the first config
return new_configs[0]
new_config_socres = []
for new_config in new_configs:
new_config_score = 0
for node_name, new_node_config in new_config.items():
for config_knob, config_value in new_node_config.items():
if (
config_knob == "variant"
and config_value != current_config[node_name][config_knob]
):
new_config_score -= 1
if (
config_knob == "batch"
and str(config_value) != current_config[node_name][config_knob]
):
new_config_score -= 1
new_config_socres.append(new_config_score)
chosen_config_index = new_config_socres.index(max(new_config_socres))
chosen_config = new_configs[chosen_config_index]
return chosen_config
def update_recieved_load(self, all_recieved_loads) -> None:
"""extract the entire sent load during the
experiment
"""
self.monitoring.update_recieved_load(all_recieved_loads)
def saving_config_builder(
self,
to_apply_config: Dict[str, Any],
node_orders: List[str],
stage_wise_latencies: List[float],
stage_wise_accuracies: List[float],
stage_wise_throughputs: List[float],
):
saving_config = to_apply_config
for index, node in enumerate(node_orders):
saving_config[node]["latency"] = stage_wise_latencies[index]
saving_config[node]["accuracy"] = stage_wise_accuracies[index]
saving_config[node]["throughput"] = stage_wise_throughputs[index]
return saving_config
class Monitoring:
def __init__(
self,
pipeline_name: str,
sla: float,
base_allocations: Dict[str, Dict[str, int]],
stage_wise_slas: Dict[str, float],
) -> None:
self.pipeline_name = pipeline_name
self.adaptation_report = {}
self.adaptation_report["timesteps"] = {}
self.adaptation_report["metadata"] = {}
self.adaptation_report["metadata"]["sla"] = sla
self.adaptation_report["metadata"]["base_allocations"] = base_allocations
self.adaptation_report["metadata"]["stage_wise_slas"] = stage_wise_slas
def adaptation_step_report(
self,
duration: float,
to_apply_config: Dict[str, Dict[str, Union[str, int]]],
objective: float,
timestep: str,
time_interval: int,
monitored_load: List[int],
predicted_load: int,
):
timestep = int(timestep)
self.adaptation_report["timesteps"][timestep] = {}
self.adaptation_report["timesteps"][timestep]["duration"] = duration
self.adaptation_report["timesteps"][timestep]["config"] = to_apply_config
if objective is not None:
self.adaptation_report["timesteps"][timestep]["accuracy_objective"] = float(
objective["accuracy_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["resource_objective"] = float(
objective["resource_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["batch_objective"] = float(
objective["batch_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["objective"] = float(
objective["objective"][0]
)
else:
self.adaptation_report["timesteps"][timestep]["resource_objective"] = None
self.adaptation_report["timesteps"][timestep]["accuracy_objective"] = None
self.adaptation_report["timesteps"][timestep]["batch_objective"] = None
self.adaptation_report["timesteps"][timestep]["objective"] = None
self.adaptation_report["timesteps"][timestep]["time_interval"] = time_interval
self.adaptation_report["timesteps"][timestep]["monitored_load"] = monitored_load
self.adaptation_report["timesteps"][timestep]["predicted_load"] = predicted_load
def update_recieved_load(self, all_recieved_loads: List[float]):
self.adaptation_report["metadata"]["recieved_load"] = all_recieved_loads
class Predictor:
def __init__(
self,
predictor_type,
backup_predictor_type: str = "reactive",
backup_predictor_duration=2,
) -> int:
self.predictor_type = predictor_type
self.backup_predictor = backup_predictor_type
predictors = {
"lstm": load_model(LSTM_PATH),
"reactive": lambda l: l[-1],
"max": lambda l: max(l),
"avg": lambda l: max(l) / len(l),
"arima": None, # it is defined in place
}
self.model = predictors[predictor_type]
self.backup_model = predictors[backup_predictor_type]
self.backup_predictor_duration = backup_predictor_duration
def predict(self, series: List[int]):
series_aggregated = []
step = 10 # take maximum of each past 10 seconds
for i in range(0, len(series), step):
series_aggregated.append(max(series[i : i + step]))
if len(series_aggregated) >= int((self.backup_predictor_duration * 60) / step):
if self.predictor_type == "lstm":
model_intput = tf.convert_to_tensor(
np.array(series_aggregated[-LSTM_INPUT_SIZE:]).reshape(
(-1, LSTM_INPUT_SIZE, 1)
),
dtype=tf.float32,
)
model_output = self.model.predict(model_intput)[0][0]
elif self.predictor_type == "arima":
model_intput = np.array(series_aggregated)
model = ARIMA(list(model_intput), order=(1, 0, 0))
model_fit = model.fit()
model_output = int(max(model_fit.forecast(steps=2))) # max
else:
model_output = self.model(series_aggregated)
else:
model_output = self.backup_model(series_aggregated)
return model_output