@@ -159,7 +159,7 @@ impl<F: Float> Clone for GpInnerParams<F> {
159159/// let ytest = xsinx(&xtest);
160160///
161161/// let ypred = kriging.predict(&xtest).expect("Kriging prediction");
162- /// let yvariances = kriging.predic_var (&xtest).expect("Kriging prediction");
162+ /// let yvariances = kriging.predict_var (&xtest).expect("Kriging prediction");
163163///```
164164///
165165/// # Reference:
@@ -270,7 +270,7 @@ impl<F: Float, Mean: RegressionModel<F>, Corr: CorrelationModel<F>> GaussianProc
270270
271271 /// Predict variance values at n given `x` points of nx components specified as a (n, nx) matrix.
272272 /// Returns n variance values as (n, 1) column vector.
273- pub fn predic_var ( & self , x : & ArrayBase < impl Data < Elem = F > , Ix2 > ) -> Result < Array2 < F > > {
273+ pub fn predict_var ( & self , x : & ArrayBase < impl Data < Elem = F > , Ix2 > ) -> Result < Array2 < F > > {
274274 let ( rt, u, _) = self . _compute_rt_u ( x) ;
275275
276276 let mut b = Array :: ones ( rt. ncols ( ) ) - rt. mapv ( |v| v * v) . sum_axis ( Axis ( 0 ) )
@@ -561,7 +561,7 @@ impl<F: Float, Mean: RegressionModel<F>, Corr: CorrelationModel<F>> GaussianProc
561561 /// Predict variance derivatives at a point `x` specified as a (nx,) vector where x has nx components.
562562 /// Returns a (nx,) vector containing variance derivatives at `x` wrt each nx components
563563 #[ cfg( not( feature = "blas" ) ) ]
564- pub fn predict_variance_derivatives_single (
564+ pub fn predict_var_derivatives_single (
565565 & self ,
566566 x : & ArrayBase < impl Data < Elem = F > , Ix1 > ,
567567 ) -> Array1 < F > {
@@ -630,7 +630,7 @@ impl<F: Float, Mean: RegressionModel<F>, Corr: CorrelationModel<F>> GaussianProc
630630
631631 /// See non blas version
632632 #[ cfg( feature = "blas" ) ]
633- pub fn predict_variance_derivatives_single (
633+ pub fn predict_var_derivatives_single (
634634 & self ,
635635 x : & ArrayBase < impl Data < Elem = F > , Ix1 > ,
636636 ) -> Array1 < F > {
@@ -709,14 +709,11 @@ impl<F: Float, Mean: RegressionModel<F>, Corr: CorrelationModel<F>> GaussianProc
709709
710710 /// Predict variance derivatives at a set of points `x` specified as a (n, nx) matrix where x has nx components.
711711 /// Returns a (n, nx) matrix containing variance derivatives at `x` wrt each nx components
712- pub fn predict_variance_derivatives (
713- & self ,
714- x : & ArrayBase < impl Data < Elem = F > , Ix2 > ,
715- ) -> Array2 < F > {
712+ pub fn predict_var_derivatives ( & self , x : & ArrayBase < impl Data < Elem = F > , Ix2 > ) -> Array2 < F > {
716713 let mut derivs = Array :: zeros ( ( x. nrows ( ) , x. ncols ( ) ) ) ;
717714 Zip :: from ( derivs. rows_mut ( ) )
718715 . and ( x. rows ( ) )
719- . for_each ( |mut der, x| der. assign ( & self . predict_variance_derivatives_single ( & x) ) ) ;
716+ . for_each ( |mut der, x| der. assign ( & self . predict_var_derivatives_single ( & x) ) ) ;
720717 derivs
721718 }
722719}
@@ -767,7 +764,7 @@ where
767764 "The number of data points must match the number of output targets."
768765 ) ;
769766
770- let values = self . 0 . predic_var ( x) . expect ( "GP Prediction" ) ;
767+ let values = self . 0 . predict_var ( x) . expect ( "GP Prediction" ) ;
771768 * y = values;
772769 }
773770
@@ -1300,12 +1297,12 @@ mod tests {
13001297 let gpr_vals = gp. predict( & xplot) . unwrap( ) ;
13011298
13021299 let yvars = gp
1303- . predic_var ( & arr2( & [ [ 1.0 ] , [ 3.5 ] ] ) )
1300+ . predict_var ( & arr2( & [ [ 1.0 ] , [ 3.5 ] ] ) )
13041301 . expect( "prediction error" ) ;
13051302 let expected_vars = arr2( & [ [ 0. ] , [ 0.1 ] ] ) ;
13061303 assert_abs_diff_eq!( expected_vars, yvars, epsilon = 0.5 ) ;
13071304
1308- let gpr_vars = gp. predic_var ( & xplot) . unwrap( ) ;
1305+ let gpr_vars = gp. predict_var ( & xplot) . unwrap( ) ;
13091306
13101307 let test_dir = "target/tests" ;
13111308 std:: fs:: create_dir_all( test_dir) . ok( ) ;
@@ -1602,9 +1599,9 @@ mod tests {
16021599 println!( "value at [{},{}] = {}" , xa, xb, y_pred) ;
16031600 let y_deriv = gp. predict_derivatives( & x) ;
16041601 println!( "deriv at [{},{}] = {}" , xa, xb, y_deriv) ;
1605- let y_pred = gp. predic_var ( & x) . unwrap( ) ;
1602+ let y_pred = gp. predict_var ( & x) . unwrap( ) ;
16061603 println!( "variance at [{},{}] = {}" , xa, xb, y_pred) ;
1607- let y_deriv = gp. predict_variance_derivatives ( & x) ;
1604+ let y_deriv = gp. predict_var_derivatives ( & x) ;
16081605 println!( "variance deriv at [{},{}] = {}" , xa, xb, y_deriv) ;
16091606
16101607 let diff_g = ( y_pred[ [ 1 , 0 ] ] - y_pred[ [ 2 , 0 ] ] ) / ( 2. * e) ;
@@ -1658,9 +1655,9 @@ mod tests {
16581655 [ xa, xb + e] ,
16591656 [ xa, xb - e]
16601657 ] ;
1661- let y_pred = gp. predic_var ( & x) . unwrap ( ) ;
1658+ let y_pred = gp. predict_var ( & x) . unwrap ( ) ;
16621659 println ! ( "variance at [{xa},{xb}] = {y_pred}" ) ;
1663- let y_deriv = gp. predict_variance_derivatives ( & x) ;
1660+ let y_deriv = gp. predict_var_derivatives ( & x) ;
16641661 println ! ( "variance deriv at [{xa},{xb}] = {y_deriv}" ) ;
16651662
16661663 let diff_g = ( y_pred[ [ 1 , 0 ] ] - y_pred[ [ 2 , 0 ] ] ) / ( 2. * e) ;
0 commit comments