-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfunctions.py
240 lines (190 loc) · 8.5 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import sys
import glob
import random
import numpy as np
import pandas as pd
from PIL import Image
from shutil import copyfile
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from IPython.core.display import display
import scipy.ndimage
from keras.models import Model
def visualize_incp(model, img_loc):
image_shape = (512, 512)
img = Image.open(img_loc)
img = np.array(img.resize(image_shape))
get_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
class_weights = model.layers[-1].get_weights()[0]
pred_model = Model(inputs=model.input, outputs=model.get_layer(index=-1).output)
cov_model = Model(inputs=model.input, outputs=model.get_layer(index=310).output)
predictions = pred_model.predict(np.expand_dims(img, axis=0))
conv_outputs = cov_model.predict(np.expand_dims(img, axis=0))
conv_outputs = conv_outputs[0, :, :, :]
cam = np.zeros(dtype = np.float32, shape = [conv_outputs.shape[0], conv_outputs.shape[0], class_weights.shape[1]])
heat_img = np.zeros(dtype = np.float32, shape = [conv_outputs.shape[0], conv_outputs.shape[0], class_weights.shape[1]])
print('conv_outputs.shape', conv_outputs.shape)
print('class_weights.shape', class_weights.shape)
print('cam.shape', cam.shape)
#Create the class activation map.
# Convert final conv layer from features (2048 dim) to predictions (8)
# Already learned mapping after global average pooling, so just appply it to every spatial location
for target_class in range(class_weights.shape[1]):
for i, w in enumerate(class_weights[:, target_class]):
cam[:, :, target_class] += w * conv_outputs[:, :, i]
zoom_factor=image_shape[0]/cam.shape[0]
cam = scipy.ndimage.zoom(cam, (zoom_factor, zoom_factor, 1), order=2)
# Normalize it to 255
#cam = cam-np.amin(cam)
cam=cam-np.mean(cam)
cam = 255*(cam/np.amax(cam))
print('np.mean(cam)', np.mean(cam))
print('np.mean(img)', np.mean(img))
for i in range(2):
heat_img = img
heat_img[:, :, 0] = cam[:, :, i]*0.5
plt.imshow(heat_img)
plt.figure(figsize=(10,6))
plt.show()
def cv_features(model_2, model_8, base_data_dir):
import itertools
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
results_2 = pd.DataFrame(index=range(5), columns=['test_acc', 'train_acc', 'fold'])
results_8 = pd.DataFrame(index=range(5), columns=['test_acc', 'train_acc', 'fold'])
for i in range(5):
fold = 'fold'+str(i+1)
print('Fold ', i )
# load the train data
train_feat_loc=os.path.join(base_data_dir, 'features', 'vgg', fold ,'100','train','train_feat_vgg_100_aug1.npy')
valid_feat_loc=os.path.join(base_data_dir, 'features', 'vgg', fold ,'100','valid','valid_feat_vgg_100_aug1.npy')
train_features = np.load(train_feat_loc)
valid_features = np.load(valid_feat_loc)
train_features = np.concatenate((train_features, valid_features), axis=0)
y_train = train_features[: ,:8]
x_train = train_features[: ,8:]
# Make y-values indicating benign vs. malignant
y_bin_train = np.zeros((y_train.shape[0],2))
for index, row in enumerate(y_train):
if(np.sum(row[:4])>0):
y_bin_train[index, :] = 0
y_bin_train[index, 0] = 1
else:
y_bin_train[index, :] = 0
y_bin_train[index, 1] = 1
# load the test data
test_feat_loc=os.path.join(base_data_dir, 'features', 'vgg', fold ,'100','test','test_feat_vgg_100_aug1.npy')
test_features = np.load(test_feat_loc)
y_test = test_features[:,:8]
x_test = test_features[:,8:]
# Make y-values indicating benign vs. malignant
y_bin_test = np.zeros((y_test.shape[0],2))
for index, row in enumerate(y_test):
if(np.sum(row[:4])>0):
y_bin_test[index, :] = 0
y_bin_test[index, 0] = 1
else:
y_bin_test[index, :] = 0
y_bin_test[index, 1] = 1
# get rid of hot-one
y_bin_train = np.argmax(y_bin_train, axis=1)
y_bin_test = np.argmax(y_bin_test, axis=1)
y_8_train = np.argmax(y_train, axis=1)
y_8_test = np.argmax(y_test, axis=1)
########### 2 CLASS ###################
# Fit the model:
clf = model_2
clf.fit(x_train, y_bin_train)
#train and test acc
y_pred = clf.predict(x_train)
train_acc = accuracy_score(y_bin_train, y_pred)
y_pred_2 = clf.predict(x_test)
test_acc=accuracy_score(y_bin_test, y_pred_2)
results_2.loc[i] = [test_acc, train_acc, fold]
########### 8 CLASS ###################
# Fit the model:
clf = model_8
clf.fit(x_train, y_8_train)
#train and test acc
y_pred = clf.predict(x_train)
train_acc = accuracy_score(y_8_train, y_pred)
y_pred_8 = clf.predict(x_test)
test_acc=accuracy_score(y_8_test, y_pred_8)
results_8.loc[i] = [test_acc, train_acc, fold]
print('Binary classification results:')
display(results_2)
print('Average Test Accc: ', results_2["test_acc"].mean())
print('Binary Classification Confusion matrix for fold 5:')
cm = confusion_matrix(y_bin_test, y_pred_2)
classes = ['B', 'M']
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
# add the numbers
thresh = cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
print('8-Class Classification Results:')
display(results_8)
print('Average Test Accc: ', results_8["test_acc"].mean())
print('8-Class Classification Confusion matrix for fold 5:')
cm = confusion_matrix(y_8_test, y_pred_8)
classes = ['B_A', 'B_F', 'B_PT', 'B_TA', 'M_DC', 'M_LC', 'M_MC', 'M_PC']
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
# add the numbers
thresh = cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
def get_freatures_vgg(generator, loc, samples=8, classes=8, batch_size=1):
num_imgs = sum([len(files) for r, d, files in os.walk(loc)])
num_samples = samples*num_imgs
print('num_imgs', num_imgs)
print('num_samples', num_samples)
from keras.applications.vgg16 import VGG16
base_model = VGG16(weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.get_layer('fc2').output)
print('loaded VGG')
all_features = np.zeros((num_samples, 4096+classes))
for i in range(0, num_samples, batch_size):
x, y = next(generator)
features = model.predict(x)
# all_features[i:i+len(features), 0:classes] = y
# all_features[i:i+len(features), classes:] = features
all_features[i, 0:classes] = y
all_features[i, classes:] = features
print('np.sum(all_features[:, :8]', np.sum(all_features[:, :8]))
print('all_features.shape', all_features.shape)
return all_features
def get_freatures_incp3(model, loc, classes=8, image_shape = (512, 512)):
all_imgs = glob.glob(loc+'/**/*.png', recursive=True)
num_samples = len(all_imgs)
conv_model = Model(inputs=model.input, outputs=model.get_layer(index=311).output)
all_features = np.zeros((num_samples, 2048))
features_names = []
for i, image_loc in enumerate(all_imgs):
image = Image.open(image_loc)
image = np.array(image.resize(image_shape))
features = conv_model.predict(np.expand_dims(image, axis=0))
features_names.append(image_loc.rsplit('/')[-1])
all_features[i, :] = features
return features_names, all_features