-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodels.py
373 lines (294 loc) · 14.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import sys
import glob
import shutil
import random
from random import randint
import numpy as np
from PIL import Image
from PIL import ImageFilter
import keras
from keras.models import Sequential, Model, load_model
from keras.layers import Dropout, Flatten, Reshape, Input, Dense, GlobalAveragePooling2D
from keras.layers.core import Activation, Dense, Lambda
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.pooling import GlobalAveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.engine.topology import Layer
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
# Cyclical learning rates
def triangular2(epoch):
base_lr = .0005
max_lr = .005
step_size = 5
cycle = np.floor(1+epoch/(2*step_size))
x = np.abs(epoch/step_size - 2*cycle + 1)
lr = base_lr + (max_lr-base_lr)*np.maximum(0, (1-x))/float(2**(cycle-1))
return lr
# A flatten that doesn't cause problems when input shape isn't defined:
def flatten(x):
batch_size = K.shape(x)[0]
x = K.reshape(x, (batch_size, -1))
return x
def conv_bn_dp(x, filters, dropout):
a = Conv2D(16, (3, 3), padding='same', kernel_initializer='he_normal')(x)
b = BatchNormalization()(a)
c = Activation('relu')(b)
d = Dropout(dropout)(c)
return d
# Basic medium sided CNN with fully connected layer
def conv_6L(learning_rate = .001, dropout = .1, num_output=2):
model = Sequential()
model.add(Conv2D(16, (3, 3), padding='same', input_shape=(512, 512, 3), kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Conv2D(16, (3, 3), padding='same', kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3), padding='same', kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Conv2D(32, (3, 3), padding='same', kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, kernel_initializer="he_normal"))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout*5))
model.add(Dense(num_output, kernel_initializer="he_normal"))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('softmax'))
Adam = keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'])
return model
####### Fine tune a model
def ft_pre_model(base_model, data_loc, out_loc, magnification, num_out, epochs_first=10, img_dim=512, layer_train=249):
# Params
epochs_first=int(epochs_first)
batch_size=16 # make this divisible by len(x_data)
img_dim=int(img_dim)
layer_train = int(layer_train)
# Paths to data
if not os.path.exists(out_loc):
os.makedirs(out_loc)
train_loc = os.path.join(str(data_loc), str(magnification), 'train')
valid_loc = os.path.join(str(data_loc), str(magnification), 'valid')
num_train = len(glob.glob(train_loc + '/**/*.png', recursive=True))
num_valid = len(glob.glob(valid_loc + '/**/*.png', recursive=True))
print('num_train', num_train)
print('num_valid', num_valid)
# Set the number of steps per epoch
steps_per_epoch = np.floor(num_train/batch_size) # num of batches from generator at each epoch. (make it full train set)
validation_steps = np.floor(num_valid/batch_size)# size of validation dataset divided by batch size
print('steps_per_epoch', steps_per_epoch)
print('validation_steps', validation_steps)
# Image generators
datagen = ImageDataGenerator(
preprocessing_function=preprocess_input,
shear_range=0.2,
zoom_range=0.1,
height_shift_range=.2,
width_shift_range=.2,
rotation_range=360,
horizontal_flip=True,
vertical_flip=True)
generator = datagen.flow_from_directory(
train_loc,
target_size=(img_dim, img_dim),
batch_size=batch_size,
class_mode='categorical')
valid_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input)
valid_generator = valid_datagen.flow_from_directory(
valid_loc,
target_size=(img_dim, img_dim),
batch_size=batch_size,
class_mode='categorical')
# train the last layers first. We don't need this to be perfect, just get resonable weights before fine tuning
# add a global spatial average pooling layer for visualization
x = base_model.output
x = GlobalAveragePooling2D()(x)
predictions = Dense(num_out, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
print('Training the top layers only')
hist = model.fit_generator(generator,
validation_data=valid_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs_first,
validation_steps=validation_steps)
print('Make sure nothing is going terribly wrong with training last layers')
print('Final 2 Epochs Avg Validation loss: ', np.mean(hist.history['val_acc'][-2:]))
plt.plot(hist.history['loss'])
plt.plot(hist.history['acc'])
plt.plot(hist.history['val_acc'])
plt.title('Training top layers')
plt.ylabel('Accuracy')
plt.xlabel('epoch')
plt.legend(['Train loss', 'Train acc', 'val_acc'], loc='upper left')
plt.figure(figsize=(10,6))
plt.show()
# at this point, the top layers are well trained and we can start fine-tuning convolutional layers
# We will freeze the bottom N layers and train the remaining top layers.
for layer in model.layers[:layer_train]:
layer.trainable = False
for layer in model.layers[layer_train:]:
layer.trainable = True
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
print('Fine tuning layers')
callbacks = [EarlyStopping(monitor='val_loss', patience=5, verbose=0),
ModelCheckpoint(filepath=os.path.join(out_loc, 'fine_tune'+'_.{epoch:02d}-{val_acc:.2f}.hdf5'),
verbose=1, monitor='val_loss', save_best_only=True)]
hist = model.fit_generator(generator,
validation_data=valid_generator,
steps_per_epoch=steps_per_epoch,
epochs=100,
validation_steps=validation_steps,
callbacks=callbacks)
print('Check fine-tuning')
print('Final 5 Epochs Avg Validation loss: ', np.mean(hist.history['val_acc'][-5:]))
plt.plot(hist.history['loss'])
plt.plot(hist.history['acc'])
plt.plot(hist.history['val_acc'])
plt.title('Fine tuning model')
plt.ylabel('Accuracy')
plt.xlabel('epoch')
plt.legend(['Train loss', 'Train acc', 'val_acc'], loc='upper left')
plt.figure(figsize=(10,6))
plt.show()
############################
# Pre-trained VGG model using 2 fully connected layers.
# Standard for baseline performance
def vgg16_1(learning_rate=.001, dropout = .1, num_output=2, img_dim=224):
# try:
# vgg16 = VGG16(weights='imagenet', include_top=False, input_shape = (512, 512, 3))
# except:
vgg16 = load_model('project/rbbidart/models/vgg16')
x=vgg16.get_layer('block5_pool').output
x = Flatten(input_shape=(int(img_dim/32), int(img_dim/32), 512))(x) # last conv layer outputs 7x7x512
x = Dense(4096, kernel_initializer='glorot_uniform')(x)
x = keras.layers.normalization.BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, kernel_initializer='glorot_uniform')(x)
x = keras.layers.normalization.BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(num_output, kernel_initializer='glorot_uniform')(x)
x = keras.layers.normalization.BatchNormalization()(x)
pred = Activation('softmax')(x)
model = Model(outputs = pred, inputs = vgg16.input)
for layer in model.layers[:19]: # only train fc layers.
layer.trainable = False
Adam = keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'])
return model
# Fully convolutional VGG-16. 3 conv layers instead of fully connected, followed by global pooling
# ???? FC1 doesn't downsample, so cna be used with normal 224 sized VVG
def vgg16_fc1(learning_rate=.001, dropout = .1, num_output=2, img_dim=224): # have to leave size = 224
# try:
# vgg16 = VGG16(weights='imagenet', include_top=False)
# except:
vgg16 = load_model('project/rbbidart/models/vgg16')
x=vgg16.get_layer('block5_pool').output
x = Conv2D(256, (3, 3), activation='relu', padding='same', input_shape=(int(img_dim/32), int(img_dim/32), 512))(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = Conv2D(num_output, (3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = GlobalAveragePooling2D()(x)
pred = Activation('softmax')(x)
model = Model(outputs = pred, inputs = vgg16.input)
for layer in model.layers[:19]: # only train fc layers.
layer.trainable = False
Adam = keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'])
return model
# Fully convolutional VGG-16. 2 conv layers, global pooling, dense to rehape to proper class number
def vgg16_fc1b(learning_rate=.001, dropout = .1, num_output=2, img_dim=224):
# try:
# vgg16 = VGG16(weights='imagenet', include_top=False)
# except:
vgg16 = load_model('project/rbbidart/models/vgg16')
x=vgg16.get_layer('block5_pool').output
x = Conv2D(256, (3, 3), activation='relu', padding='same', input_shape=(int(img_dim/32), int(img_dim/32), 512))(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = GlobalAveragePooling2D()(x)
x = Dense(num_output, activation = 'softmax')(x)
pred = Activation('softmax')(x)
model = Model(outputs = pred, inputs = vgg16.input)
for layer in model.layers[:19]: # only train fc layers.
layer.trainable = False
Adam = keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'])
return model
# try adding one more conv layer before max pool
def vgg16_fc2(learning_rate=.001, dropout = .1, num_output=2, img_dim=224):
# same freatures as include_top=False
# try:
# vgg16 = VGG16(weights='imagenet', include_top=False)
# except:
vgg16 = load_model('project/rbbidart/models/vgg16')
x=vgg16.get_layer('block5_conv3').output
x = Conv2D(256, (3, 3), activation='relu', padding='same', input_shape=(int(img_dim/16), int(img_dim/16), 512))(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = Dropout(0.1)(x)
x = BatchNormalization()(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(num_output, (3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = GlobalAveragePooling2D()(x)
pred = Activation('softmax')(x)
model = Model(outputs = pred, inputs = vgg16.input)
for layer in model.layers[:19]: # only train fc layers.
layer.trainable = False
Adam = keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'])
return model
##### Inception