-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHeapSeparationAlgebra.v
160 lines (137 loc) · 4.34 KB
/
HeapSeparationAlgebra.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Add LoadPath "C:\td202\GitHub\coq\views".
Require Import Heaps.
Require Import Tactics.
Require Import SeparationAlgebras.
Require Import Morphisms.
Require Import SetoidClass.
Require Import Setof.
Module HeapSA (Import ht : HeapTypes) (Import h : THeaps ht).
(* First, overwrite is a setoid morphism. *)
Instance overwrite_morphism : Proper
(equiv ==> equiv ==> equiv) overwrite.
split; intro; simpl; apply fun_equiv; rewr auto.
Qed.
(* Pointwise disjointness of partial functions. *)
Definition pw_disjoint {A B} (f1 f2 : A -> option B) :=
forall a, f1 a = None \/ f2 a = None.
(* Which is a setoid morphism, wrt extensional
equivalence.
*)
Instance pw_disjoint_morphism {A B} :
Proper (equiv ==> equiv ==> iff)
(pw_disjoint (A:=A) (B:=B)).
cbv; intuition; use_foralls; rewr trivial.
Qed.
(* Disjointness of stores *)
Definition st_disjoint (s1 s2 : store) :=
pw_disjoint (heap s1) (heap s2) /\
pw_disjoint (vars s1) (vars s2).
Instance st_disjoint_morphism :
Proper (equiv ==> equiv ==> iff)
st_disjoint.
repeat intro.
unfold st_disjoint.
rewr auto.
Qed.
(* Disjoint union of stores. *)
Definition sepop : partial_op store :=
fun s1 s2 =>
{|
defined := st_disjoint s1 s2;
val := overwrite s1 s2
|}.
Instance sepop_morph :
Proper (equiv ==> equiv ==> equiv)
sepop.
unfold sepop.
split; simpl; rewr auto.
Qed.
(* Overwrite is commutative when disjoint *)
Lemma disjoint_over_comm {A B} :
forall x y : A -> option B,
pw_disjoint x y ->
pw_over x y == pw_over y x.
cbv; intros.
use_foralls.
intuition.
rewrite H1; destruct (y a); reflexivity.
rewrite H1; destruct (x a); reflexivity.
Qed.
(* Disjoint union is commutative. *)
Lemma sepop_comm : forall x y,
sepop x y == sepop y x.
split.
cbv; firstorder.
simpl; unfold st_disjoint.
intuition; apply disjoint_over_comm;
trivial.
Qed.
(* And associative. *)
Lemma sepop_assoc : forall m1 m2 m3,
lift_op sepop (sepop m1 m2) (lift_val m3)
== lift_op sepop (lift_val m1) (sepop m2 m3).
intros; split.
simpl;unfold st_disjoint; intuition;
intro a;
repeat match goal with
| [H: pw_disjoint _ _ |- _] => generalize (H a); clear H; intro H; intuition idtac
| [H: pw_disjoint _ _ |- _] => clear H end;
cbv [overwrite pw_over] in *; simpl in *;
repeat match goal with
[H : ?X = None, H0 : context [?X] |- _] => rewrite H in H0
| [H : context [match ?X with Some b => Some b | None => None end] |- _] => destruct X; intuition idtac
| [ |- context [match ?X with Some b => _ | None => _ end]] => destruct X; intuition idtac
end; intuition idtac.
intros; split; intro a;
simpl; unfold pw_over.
destruct (heap m1 a); intuition.
destruct (vars m1 a); intuition.
Qed.
(* The unit is the empty store. *)
Definition is_unit :=
(fun s => (forall a, heap s a = None) /\ (forall b, vars s b = None)).
Instance is_unit_morph : Proper (equiv ==> iff) is_unit.
repeat intro.
unfold is_unit;
split; intros;
use_foralls;
rewr intuition.
Qed.
Definition sepop_unit : Setof (A:=store) :=
{| elem := is_unit |}.
Local Notation "a ∈ u" := (elem u a) (at level 50).
(* There is only one unit, up to equivalence: *)
Definition the_unit : store :=
{|
heap := fun _ : Loc => None;
vars := fun _ : Var => None;
heapBound := 0;
heapFree := fun (m : nat) (_ : 0 <= m) => eq_refl
|}.
Lemma the_unit_is_unit : the_unit ∈ sepop_unit.
cbv; easy.
Qed.
Hint Resolve the_unit_is_unit.
(* There is a unit for every store *)
Lemma sepop_unit_exists : forall m, exists i, i ∈ sepop_unit /\
sepop i m == lift_val m.
exists the_unit.
cbv; intuition.
Qed.
(* There are no other units *)
Lemma sepop_unit_min : forall m1 m2 i, i ∈ sepop_unit ->
(sepop i m1) == lift_val m2 ->
m1 == m2.
cbv; intuition;
use_foralls;
rewr trivial.
Qed.
(* We now have a separation algebra *)
Instance store_separationAlgebra : SepAlg sepop :=
{ sa_comm := sepop_comm;
sa_assoc := sepop_assoc;
sa_unit := sepop_unit;
sa_unit_exists := sepop_unit_exists;
sa_unit_min := sepop_unit_min
}.
End HeapSA.