Skip to content

Commit 687c93a

Browse files
authored
Merge pull request #135 from restackio/gemini-2-0
2 parents f310574 + 1624f65 commit 687c93a

28 files changed

+719
-167
lines changed
File renamed without changes.
File renamed without changes.
File renamed without changes.

community/gemini/README.md

+129
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,129 @@
1+
# Restack AI - Gemini Example for Autonomous Agents
2+
3+
This example demonstrates how to build reliable and scalable autonomous AI agents using Google's Gemini API with Restack. It shows how to handle rate limits (10 requests per minute for free tier with 1500 requests per day limit, concurrency limit), concurrent API calls, and workflow orchestration effectively to create agents that can independently perform complex tasks.
4+
5+
Example workflows in `src/workflows/`:
6+
- [Content Generation](src/workflows/generate_content.py): Basic natural language understanding
7+
- [Function Calling](src/workflows/function_call.py): Toolexecution
8+
- [Multi-Function Calling](src/workflows/multi_function_call.py): Complex decision making
9+
- [Multi-Function Calling](src/workflows/multi_function_call_advanced.py): Complex decision making with tools, executed as restack functions (e.g. third party APIs)
10+
- [Swarm](src/workflows/swarm.py): Parallel execution of multiple coordinated agents
11+
12+
13+
## Motivation
14+
15+
When building AI applications with Gemini, you need to handle various production challenges:
16+
17+
1. **API Rate Limits**: Gemini API has concurrent request limits that need to be managed across multiple workflows.
18+
19+
2. **Reliability**: AI workflows need retry mechanisms and graceful failure handling for production use.
20+
21+
3. **Scalability**: As your application grows to handle thousands of concurrent agents or requests, you need robust queue management and execution control.
22+
23+
4. **Scheduling**: Coordinating and managing multiple workflows running at different frequencies requires robust scheduling capabilities.
24+
25+
### How Restack Helps
26+
27+
Restack provides built-in solutions for these challenges:
28+
29+
1. **Automated Rate Limiting**: Define rate limits in service options and let Restack handle the queuing:
30+
```python
31+
client.start_service(
32+
task_queue="gemini",
33+
functions=[generate_content, function_call],
34+
options=ServiceOptions(
35+
rate_limit=3, # Match Gemini's concurrent call limit
36+
max_concurrent_function_runs=3
37+
)
38+
)
39+
```
40+
41+
2. **Built-in Retries**: Restack automatically handles retries and failure scenarios.
42+
43+
3. **Queue Management**: Efficiently manages thousands of concurrent workflows while respecting API limits.
44+
45+
4. **Scheduling**: Run workflows on various schedules (minutely, hourly, daily) or with custom cron expressions.
46+
47+
## Prerequisites
48+
49+
- Python 3.9 or higher
50+
- Poetry (for dependency management)
51+
- Docker (for running the Restack services)
52+
- Active [Google AI Studio](https://aistudio.google.com) account with API key
53+
54+
## Usage
55+
56+
1. Run Restack local engine with Docker:
57+
58+
```bash
59+
docker run -d --pull always --name restack -p 5233:5233 -p 6233:6233 -p 7233:7233 ghcr.io/restackio/restack:main
60+
```
61+
62+
2. Open the web UI to see the workflows:
63+
64+
```bash
65+
http://localhost:5233
66+
```
67+
68+
3. Clone this repository:
69+
70+
```bash
71+
git clone https://github.com/restackio/examples-python
72+
cd examples-python/community/gemini
73+
74+
4. Install dependencies using Poetry:
75+
76+
```bash
77+
poetry env use 3.12
78+
```
79+
80+
```bash
81+
poetry shell
82+
```
83+
84+
```bash
85+
poetry install
86+
```
87+
88+
```bash
89+
poetry env info # Optional: copy the interpreter path to use in your IDE (e.g. Cursor, VSCode, etc.)
90+
```
91+
92+
5. Set `GEMINI_API_KEY` as an environment variable from [Google AI Studio](https://aistudio.google.com)
93+
94+
```bash
95+
export GEMINI_API_KEY=<your-api-key>
96+
```
97+
98+
6. Run the services in dev:
99+
100+
```bash
101+
poetry run dev
102+
```
103+
104+
This will start the Restack service with the defined workflows and functions.
105+
106+
8. Schedule workflows via the UI
107+
108+
All workflows are auto-exposed with an RestAPI endpoint, ready to be run or scheduled via api request, or directly from the UI during development.
109+
110+
![UI RestAPI Endpoints](ui-restapi-endpoints.png)
111+
112+
Run or schedule individual workflows.
113+
114+
![UI Run workflow](ui-run-workflow.png)
115+
116+
Run or schedule a workflow, triggering many agents as childworkflows.
117+
118+
![UI Schedule swarm](ui-schedule-swarm.png)
119+
120+
121+
122+
## Project Structure
123+
124+
- `src/`: Main source code directory
125+
- `client.py`: Initializes the Restack client
126+
- `functions/`: Contains function definitions
127+
- `workflows/`: Contains workflow definitions
128+
- `services.py`: Sets up and runs the Restack services
129+
- `schedule_workflow.py`: Example script to schedule and run a workflow

community/gemini_generate/pyproject.toml community/gemini/pyproject.toml

+5-4
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
[tool.poetry]
2-
name = "gemini_generate"
2+
name = "gemini"
33
version = "0.0.1"
4-
description = "A simple example to generate content using Google Gemini"
4+
description = "A simple example to integrate Google Gemini into a Restack project"
55
authors = [
66
"Restack Team <[email protected]>",
77
]
@@ -10,9 +10,10 @@ packages = [{include = "src"}]
1010

1111
[tool.poetry.dependencies]
1212
python = ">=3.10,<4.0"
13-
restack-ai = "^0.0.52"
14-
google-generativeai = "0.8.3"
13+
restack-ai = "^0.0.53"
14+
google-genai = "0.5.0"
1515
watchfiles = "^1.0.0"
16+
pydantic = "^2.10.5"
1617

1718
[build-system]
1819
requires = ["poetry-core"]

community/gemini_generate/schedule_workflow.py community/gemini/schedule_workflow.py

+6-7
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,19 @@
11
import asyncio
22
import time
33
from restack_ai import Restack
4-
from dataclasses import dataclass
4+
from pydantic import BaseModel
55

6-
@dataclass
7-
class InputParams:
8-
user_content: str
6+
class InputParams(BaseModel):
7+
num_cities: int = 10
98

109
async def main():
1110
client = Restack()
1211

13-
workflow_id = f"{int(time.time() * 1000)}-GeminiGenerateOppositeWorkflow"
12+
workflow_id = f"{int(time.time() * 1000)}-GeminiSwarmWorkflow"
1413
runId = await client.schedule_workflow(
15-
workflow_name="GeminiGenerateOppositeWorkflow",
14+
workflow_name="GeminiSwarmWorkflow",
1615
workflow_id=workflow_id,
17-
input=InputParams(user_content="The opposite of hot is")
16+
input=InputParams(num_cities=10)
1817
)
1918

2019
await client.get_workflow_result(
File renamed without changes.
File renamed without changes.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,36 @@
1+
from restack_ai.function import function, log
2+
from pydantic import BaseModel
3+
from google import genai
4+
from google.genai import types
5+
6+
import os
7+
8+
@function.defn()
9+
def get_current_weather(location: str) -> str:
10+
"""Returns the current weather.
11+
12+
Args:
13+
location: The city and state, e.g. San Francisco, CA
14+
"""
15+
log.info("get_current_weather function started", location=location)
16+
return 'sunny'
17+
18+
class FunctionInputParams(BaseModel):
19+
user_content: str
20+
21+
@function.defn()
22+
async def gemini_function_call(input: FunctionInputParams) -> str:
23+
try:
24+
log.info("gemini_function_call function started", input=input)
25+
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
26+
27+
response = client.models.generate_content(
28+
model='gemini-2.0-flash-exp',
29+
contents=input.user_content,
30+
config=types.GenerateContentConfig(tools=[get_current_weather])
31+
)
32+
log.info("gemini_function_call function completed", response=response.text)
33+
return response.text
34+
except Exception as e:
35+
log.error("gemini_function_call function failed", error=e)
36+
raise e
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
from restack_ai.function import function, log
2+
from pydantic import BaseModel
3+
from google import genai
4+
from google.genai import types
5+
6+
import os
7+
8+
class FunctionInputParams(BaseModel):
9+
user_content: str
10+
11+
@function.defn()
12+
async def gemini_generate_content(input: FunctionInputParams) -> str:
13+
try:
14+
log.info("gemini_generate_content function started", input=input)
15+
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
16+
17+
response = client.models.generate_content(
18+
model='gemini-2.0-flash-exp',
19+
contents=input.user_content
20+
)
21+
log.info("gemini_generate_content function completed", response=response.text)
22+
return response.text
23+
except Exception as e:
24+
log.error("gemini_generate_content function failed", error=e)
25+
raise e
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
from restack_ai.function import function, log
2+
from pydantic import BaseModel
3+
from google import genai
4+
from google.genai import types
5+
6+
import os
7+
8+
@function.defn()
9+
def get_current_weather(location: str) -> str:
10+
"""Returns the current weather.
11+
12+
Args:
13+
location: The city and state, e.g. San Francisco, CA
14+
"""
15+
log.info("get_current_weather function started", location=location)
16+
return 'sunny'
17+
18+
@function.defn()
19+
def get_humidity(location: str) -> str:
20+
"""Returns the current humidity.
21+
22+
Args:
23+
location: The city and state, e.g. San Francisco, CA
24+
"""
25+
log.info("get_humidity function started", location=location)
26+
return '65%'
27+
28+
@function.defn()
29+
def get_air_quality(location: str) -> str:
30+
"""Returns the current air quality.
31+
32+
Args:
33+
location: The city and state, e.g. San Francisco, CA
34+
"""
35+
log.info("get_air_quality function started", location=location)
36+
return 'good'
37+
38+
class FunctionInputParams(BaseModel):
39+
user_content: str
40+
41+
@function.defn()
42+
async def gemini_multi_function_call(input: FunctionInputParams) -> str:
43+
try:
44+
log.info("gemini_multi_function_call function started", input=input)
45+
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
46+
47+
response = client.models.generate_content(
48+
model='gemini-2.0-flash-exp',
49+
contents=input.user_content,
50+
config=types.GenerateContentConfig(tools=[get_current_weather, get_humidity, get_air_quality])
51+
)
52+
log.info("gemini_multi_function_call function completed", response=response.text)
53+
return response.text
54+
except Exception as e:
55+
log.error("gemini_multi_function_call function failed", error=e)
56+
raise e
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
from restack_ai.function import function, log
2+
from pydantic import BaseModel
3+
from google import genai
4+
from google.genai import types
5+
from typing import List, Optional
6+
7+
import os
8+
from src.functions.tools import get_function_declarations
9+
10+
class ChatMessage(BaseModel):
11+
role: str
12+
content: str
13+
14+
class FunctionInputParams(BaseModel):
15+
user_content: str
16+
chat_history: Optional[List[ChatMessage]] = None
17+
18+
@function.defn()
19+
async def gemini_multi_function_call_advanced(input: FunctionInputParams):
20+
try:
21+
log.info("gemini_multi_function_call_advanced function started", input=input)
22+
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
23+
24+
functions = get_function_declarations()
25+
tools = [types.Tool(function_declarations=functions)]
26+
27+
response = client.models.generate_content(
28+
model='gemini-2.0-flash-exp',
29+
contents=[input.user_content] + ([msg.content for msg in input.chat_history] if input.chat_history else []),
30+
config=types.GenerateContentConfig(
31+
tools=tools
32+
)
33+
)
34+
return response
35+
36+
except Exception as e:
37+
log.error("Error in gemini_multi_function_call_advanced", error=str(e))
38+
raise e

0 commit comments

Comments
 (0)