-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
42 lines (32 loc) · 1.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
Train and export machine learning model using PlanesNet dataset
"""
import sys
import json
import numpy as np
from tflearn.data_utils import to_categorical
from model import model
def train(fname, out_fname):
""" Train and save CNN model on Planesnet dataset
Args:
fname (str): Path to PlanesNet JSON dataset
out_fname (str): Path to output Tensorflow model file (.tfl)
"""
# Load planesnet data
f = open(fname)
planesnet = json.load(f)
f.close()
# Preprocess image data and labels for input
X = np.array(planesnet['data']) / 255.
X = X.reshape([-1,3,20,20]).transpose([0,2,3,1])
Y = np.array(planesnet['labels'])
Y = to_categorical(Y, 2)
# Train the model
model.fit(X, Y, n_epoch=50, shuffle=True, validation_set=.2,
show_metric=True, batch_size=128, run_id='planesnet')
# Save trained model
model.save(out_fname)
# Main function
if __name__ == "__main__":
# Train using input file
train(sys.argv[1], sys.argv[2])