forked from pymc-devs/pymc-extras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinuous.py
218 lines (174 loc) · 7.19 KB
/
continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2022 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding: utf-8
"""
Experimental probability distributions for stochastic nodes in PyMC.
The imports from pymc are not fully replicated here: add imports as necessary.
"""
from typing import List, Tuple, Union
import numpy as np
import pytensor.tensor as pt
from pymc.distributions.dist_math import check_parameters
from pymc.distributions.distribution import Continuous
from pymc.distributions.shape_utils import rv_size_is_none
from pymc.pytensorf import floatX
from pytensor.tensor.random.op import RandomVariable
from pytensor.tensor.variable import TensorVariable
from scipy import stats
class GenExtremeRV(RandomVariable):
name: str = "Generalized Extreme Value"
ndim_supp: int = 0
ndims_params: List[int] = [0, 0, 0]
dtype: str = "floatX"
_print_name: Tuple[str, str] = ("Generalized Extreme Value", "\\operatorname{GEV}")
def __call__(self, mu=0.0, sigma=1.0, xi=0.0, size=None, **kwargs) -> TensorVariable:
return super().__call__(mu, sigma, xi, size=size, **kwargs)
@classmethod
def rng_fn(
cls,
rng: Union[np.random.RandomState, np.random.Generator],
mu: np.ndarray,
sigma: np.ndarray,
xi: np.ndarray,
size: Tuple[int, ...],
) -> np.ndarray:
# Notice negative here, since remainder of GenExtreme is based on Coles parametrization
return stats.genextreme.rvs(c=-xi, loc=mu, scale=sigma, random_state=rng, size=size)
gev = GenExtremeRV()
class GenExtreme(Continuous):
r"""
Univariate Generalized Extreme Value log-likelihood
The cdf of this distribution is
.. math::
G(x \mid \mu, \sigma, \xi) = \exp\left[ -\left(1 + \xi z\right)^{-\frac{1}{\xi}} \right]
where
.. math::
z = \frac{x - \mu}{\sigma}
and is defined on the set:
.. math::
\left\{x: 1 + \xi\left(\frac{x-\mu}{\sigma}\right) > 0 \right\}.
Note that this parametrization is per Coles (2001), and differs from that of
Scipy in the sign of the shape parameter, :math:`\xi`.
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 20, 200)
mus = [0., 4., -1.]
sigmas = [2., 2., 4.]
xis = [-0.3, 0.0, 0.3]
for mu, sigma, xi in zip(mus, sigmas, xis):
pdf = st.genextreme.pdf(x, c=-xi, loc=mu, scale=sigma)
plt.plot(x, pdf, label=rf'$\mu$ = {mu}, $\sigma$ = {sigma}, $\xi$={xi}')
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()
======== =========================================================================
Support * :math:`x \in [\mu - \sigma/\xi, +\infty]`, when :math:`\xi > 0`
* :math:`x \in \mathbb{R}` when :math:`\xi = 0`
* :math:`x \in [-\infty, \mu - \sigma/\xi]`, when :math:`\xi < 0`
Mean * :math:`\mu + \sigma(g_1 - 1)/\xi`, when :math:`\xi \neq 0, \xi < 1`
* :math:`\mu + \sigma \gamma`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 1`
where :math:`\gamma` is the Euler-Mascheroni constant, and
:math:`g_k = \Gamma (1-k\xi)`
Variance * :math:`\sigma^2 (g_2 - g_1^2)/\xi^2`, when :math:`\xi \neq 0, \xi < 0.5`
* :math:`\frac{\pi^2}{6} \sigma^2`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 0.5`
======== =========================================================================
Parameters
----------
mu : float
Location parameter.
sigma : float
Scale parameter (sigma > 0).
xi : float
Shape parameter
scipy : bool
Whether or not to use the Scipy interpretation of the shape parameter
(defaults to `False`).
References
----------
.. [Coles2001] Coles, S.G. (2001).
An Introduction to the Statistical Modeling of Extreme Values
Springer-Verlag, London
"""
rv_op = gev
@classmethod
def dist(cls, mu=0, sigma=1, xi=0, scipy=False, **kwargs):
# If SciPy, use its parametrization, otherwise convert to standard
if scipy:
xi = -xi
mu = pt.as_tensor_variable(floatX(mu))
sigma = pt.as_tensor_variable(floatX(sigma))
xi = pt.as_tensor_variable(floatX(xi))
return super().dist([mu, sigma, xi], **kwargs)
def logp(value, mu, sigma, xi):
"""
Calculate log-probability of Generalized Extreme Value distribution
at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or Pytensor tensor
Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma
logp_expression = pt.switch(
pt.isclose(xi, 0),
-pt.log(sigma) - scaled - pt.exp(-scaled),
-pt.log(sigma)
- ((xi + 1) / xi) * pt.log1p(xi * scaled)
- pt.pow(1 + xi * scaled, -1 / xi),
)
logp = pt.switch(pt.gt(1 + xi * scaled, 0.0), logp_expression, -np.inf)
return check_parameters(
logp, sigma > 0, pt.and_(xi > -1, xi < 1), msg="sigma > 0 or -1 < xi < 1"
)
def logcdf(value, mu, sigma, xi):
"""
Compute the log of the cumulative distribution function for Generalized Extreme Value
distribution at the specified value.
Parameters
----------
value: numeric or np.ndarray or `TensorVariable`
Value(s) for which log CDF is calculated. If the log CDF for
multiple values are desired the values must be provided in a numpy
array or `TensorVariable`.
Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma
logc_expression = pt.switch(
pt.isclose(xi, 0), -pt.exp(-scaled), -pt.pow(1 + xi * scaled, -1 / xi)
)
logc = pt.switch(1 + xi * (value - mu) / sigma > 0, logc_expression, -np.inf)
return check_parameters(
logc, sigma > 0, pt.and_(xi > -1, xi < 1), msg="sigma > 0 or -1 < xi < 1"
)
def moment(rv, size, mu, sigma, xi):
r"""
Using the mode, as the mean can be infinite when :math:`\xi > 1`
"""
mode = pt.switch(pt.isclose(xi, 0), mu, mu + sigma * (pt.pow(1 + xi, -xi) - 1) / xi)
if not rv_size_is_none(size):
mode = pt.full(size, mode)
return mode