|
| 1 | +from dash import Dash, dcc, html, callback, Input, Output, State, no_update |
| 2 | +from operator import itemgetter |
| 3 | + |
| 4 | +from langchain.prompts import ChatPromptTemplate |
| 5 | +from langchain.chat_models import ChatOpenAI |
| 6 | +from langchain.embeddings import OpenAIEmbeddings |
| 7 | +from langchain.schema.output_parser import StrOutputParser |
| 8 | +from langchain.schema.runnable import RunnablePassthrough, RunnableLambda |
| 9 | +from langchain.vectorstores import FAISS |
| 10 | + |
| 11 | +api_key = "my-api-key" # https://platform.openai.com/account/api-keys |
| 12 | +app = Dash() |
| 13 | + |
| 14 | +app.layout = html.Div([ |
| 15 | + html.H1("Summarize Earnings Reports"), |
| 16 | + html.Label("Select earnings report:"), |
| 17 | + dcc.Dropdown(value='tesla-earning-report.txt', |
| 18 | + id='reports', |
| 19 | + clearable=False, |
| 20 | + style={'width':'120px'}, |
| 21 | + options=[ |
| 22 | + {'label':'Tesla', 'value':'tesla-earning-report.txt'}, |
| 23 | + {'label':'Microsoft', 'value':'microsoft-earning-report.txt'}] |
| 24 | + ), |
| 25 | + dcc.Input(id='question', |
| 26 | + type='text', |
| 27 | + placeholder='type your question...', |
| 28 | + debounce=True, |
| 29 | + style={'width':'500px', 'height':'30px', 'margin-top':20}, |
| 30 | + maxLength=100), |
| 31 | + dcc.Loading(id="loading", children=html.Div(id='answer', children=None, style={'margin-bottom':20})), |
| 32 | + html.Hr(), |
| 33 | + html.Div(id='report-content', children=[]) |
| 34 | +]) |
| 35 | + |
| 36 | + |
| 37 | +@callback( |
| 38 | + Output('answer', 'children'), |
| 39 | + Output('report-content', 'children'), |
| 40 | + Input('question','value'), |
| 41 | + State('reports', 'value'), |
| 42 | + prevent_initial_call=True |
| 43 | +) |
| 44 | +def update_layout(question_asked, file): |
| 45 | + if question_asked: |
| 46 | + with open(file, encoding="utf8") as f: |
| 47 | + lines = f.readlines() |
| 48 | + |
| 49 | + vectorstore = FAISS.from_texts(lines, embedding=OpenAIEmbeddings(openai_api_key=api_key)) |
| 50 | + retriever = vectorstore.as_retriever() |
| 51 | + |
| 52 | + template = """Answer the question based only on the following context: |
| 53 | + {context} |
| 54 | + |
| 55 | + Question: {question} |
| 56 | + """ |
| 57 | + |
| 58 | + prompt = ChatPromptTemplate.from_template(template) |
| 59 | + |
| 60 | + model = ChatOpenAI(openai_api_key=api_key) |
| 61 | + |
| 62 | + chain = ( |
| 63 | + {"context": retriever, "question": RunnablePassthrough()} |
| 64 | + | prompt |
| 65 | + | model |
| 66 | + | StrOutputParser() |
| 67 | + ) |
| 68 | + display_answer = chain.invoke(question_asked) |
| 69 | + |
| 70 | + view_selected_report = [ |
| 71 | + html.H3("Complete earnings report chosen:"), |
| 72 | + dcc.Markdown(children=lines) |
| 73 | + |
| 74 | + ] |
| 75 | + |
| 76 | + return display_answer, view_selected_report |
| 77 | + |
| 78 | + else: |
| 79 | + return no_update |
| 80 | + |
| 81 | + |
| 82 | +if __name__ == "__main__": |
| 83 | + app.run_server(debug=True) |
0 commit comments