-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
217 lines (175 loc) · 6.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
'''
3D GAN using Keras (based on DCGAN) - written by Robbie Barrat ([email protected])
Dependencies: tensorflow 1.0 and keras 2.0
'''
import numpy as np
import time
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, Reshape
from keras.layers import Conv3D, UpSampling3D, Conv3DTranspose
from keras.layers import LeakyReLU, Dropout
from keras.layers import BatchNormalization
from keras.optimizers import Adam, RMSprop
import matplotlib.pyplot as plt
# GLOBAL VARIABLES
numpy_array_saved = "" # path to your .npy file generated with binvox_dataset.py
class ElapsedTimer(object):
def __init__(self):
self.start_time = time.time()
def elapsed(self,sec):
if sec < 60:
return str(sec) + " sec"
elif sec < (60 * 60):
return str(sec / 60) + " min"
else:
return str(sec / (60 * 60)) + " hr"
def elapsed_time(self):
print("Elapsed: %s " % self.elapsed(time.time() - self.start_time) )
class DCGAN(object):
def __init__(self, img_rows=32, img_cols=32, img_depth=32, channel=1):
self.img_rows = img_rows
self.img_cols = img_cols
self.img_depth = img_depth
self.channel = channel
self.D = None # discriminator
self.G = None # generator
self.AM = None # adversarial model
self.DM = None # discriminator model
def discriminator(self):
if self.D:
return self.D
self.D = Sequential()
depth = 50
dropout = 0.4
# In: 28 x 28 x 1, depth = 1
# Out: 14 x 14 x 1, depth=64
input_shape = (self.img_rows, self.img_cols, self.img_depth, self.channel)
kernel = (5,5,5)
strides = (2,2,2)
self.D.add(Conv3D(depth*1, kernel, strides=strides, input_shape=input_shape,\
padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
self.D.add(Conv3D(depth*2, kernel, strides=strides, padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
self.D.add(Conv3D(depth*4, kernel, strides=strides, padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
self.D.add(Conv3D(depth*8, kernel, strides=(1,1,1), padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
# Out: 1-dim probability
self.D.add(Flatten())
self.D.add(Dense(1))
self.D.add(Activation('sigmoid'))
self.D.summary()
return self.D
def generator(self):
if self.G:
return self.G
self.G = Sequential()
dropout = 0.4
depth = 50 * 4
dim = 8
kernel = (5,5,5)
strides = (2,2,2)
# In: 32
# Out: dim x dim x depth
self.G.add(Dense(dim*dim*dim*depth, input_dim=32))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(Reshape((dim, dim, dim, depth)))
self.G.add(Dropout(dropout))
# In: dim x dim x depth
# Out: 2*dim x 2*dim x depth/2
self.G.add(UpSampling3D())
self.G.add(Conv3DTranspose(int(depth/2), kernel, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(UpSampling3D())
self.G.add(Conv3DTranspose(int(depth/4), kernel, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(Conv3DTranspose(int(depth/8), kernel, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
# Out: 28 x 28 x 1 grayscale image [0.0,1.0] per pix
self.G.add(Conv3DTranspose(1, kernel, padding='same'))
self.G.add(Activation('sigmoid'))
self.G.summary()
return self.G
def discriminator_model(self):
if self.DM:
return self.DM
optimizer = RMSprop(lr=0.0002, decay=6e-8)
self.DM = Sequential()
self.DM.add(self.discriminator())
self.DM.compile(loss='binary_crossentropy', optimizer=optimizer,\
metrics=['accuracy'])
return self.DM
def adversarial_model(self):
if self.AM:
return self.AM
optimizer = RMSprop(lr=0.0001, decay=3e-8)
self.AM = Sequential()
self.AM.add(self.generator())
self.AM.add(self.discriminator())
self.AM.compile(loss='binary_crossentropy', optimizer=optimizer,\
metrics=['accuracy'])
return self.AM
class MNIST_DCGAN(object):
def __init__(self):
self.img_rows = 32
self.img_cols = 32
self.img_depth = 32
self.channel = 1
print "initializing data..."
self.x_train = np.load(numpy_array_saved)
print "data initialized"
print "initializing model"
self.DCGAN = DCGAN()
self.discriminator = self.DCGAN.discriminator_model()
self.adversarial = self.DCGAN.adversarial_model()
self.generator = self.DCGAN.generator()
print "model initialized"
def train(self, train_steps=50000, batch_size=64, save_interval=0):
noise_input = None
if save_interval>0:
noise_input = np.random.uniform(-1.0, 1.0, size=[16, 32])
for i in range(train_steps):
print "training... " + str(i)
images_train = self.x_train[np.random.randint(0,
self.x_train.shape[0], size=batch_size), :, :, :]
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 32])
print "Generating stuff from network..."
images_fake = self.generator.predict(noise)
#images_fake = np.squeeze(images_fake)
#for x in images_fake:
# print x.shape
#for x in images_train:
# print x.shape
print "Concatenating real + Fake images"
if i % 50 == 0:
outfile = open("generations/generation-" + str(i), "w")
np.save(outfile, images_fake)
x = np.concatenate((images_train, images_fake))
y = np.ones([2*batch_size, 1])
y[batch_size:, :] = 0
print "loss stuff..."
d_loss = self.discriminator.train_on_batch(x, y)
y = np.ones([batch_size, 1])
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 32])
a_loss = self.adversarial.train_on_batch(noise, y)
log_mesg = "%d: [D loss: %f, acc: %f]" % (i, d_loss[0], d_loss[1])
log_mesg = "%s [A loss: %f, acc: %f]" % (log_mesg, a_loss[0], a_loss[1])
print(log_mesg)
if i % 32 == 0 or i == 0:
self.generator.save(str(i) + '_2_gen.h5')
self.adversarial.save(str(i) + '_2_adv.h5')
if __name__ == '__main__':
mnist_dcgan = MNIST_DCGAN()
timer = ElapsedTimer()
mnist_dcgan.train(train_steps=100000, batch_size=64, save_interval=1)
timer.elapsed_time()