-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataset.py
100 lines (77 loc) · 2.84 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import random
import re
from glob import glob
import cv2
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
import torchvision
from config import IMG_DIR
def _mask_to_img(mask_file):
img_file = re.sub('^{}/masks'.format(IMG_DIR), '{}/images'.format(IMG_DIR), mask_file)
img_file = re.sub('\.ppm$', '.jpg', img_file)
return img_file
def _img_to_mask(img_file):
mask_file = re.sub('^{}/images'.format(IMG_DIR), '{}/masks'.format(IMG_DIR), img_file)
# mask_file = re.sub('\.jpg$', '.ppm', mask_file)
return mask_file
def get_img_files_eval():
mask_files = sorted(glob('{}/masks/*.jpg'.format(IMG_DIR)))
return np.array([_mask_to_img(f) for f in mask_files])
def get_img_files():
mask_files = sorted(glob('{}/masks/*.jpg'.format(IMG_DIR)))
# mask_files = mask_files[:10000]
sorted_mask_files = []
# Sorting out
for msk in mask_files:
# Sort out black masks
msk_img = cv2.imread(msk)
if len(np.where(msk_img == 1)[0]) == 0:
continue
# Sort out night images
img_path = re.sub('^{}/masks'.format(IMG_DIR), '{}/images'.format(IMG_DIR), msk)
img = cv2.imread(img_path)
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
higher_img = gray_image[0:120, :]
if np.average(higher_img) > 100:
# Day image, so append
sorted_mask_files.append(msk)
# return np.array([_mask_to_img(f) for f in mask_files])
return np.array([_mask_to_img(f) for f in sorted_mask_files])
class MaskDataset(Dataset):
def __init__(self, img_files, transform, mask_transform=None, mask_axis=0):
self.img_files = img_files
self.mask_files = [_img_to_mask(f) for f in img_files]
self.transform = transform
if mask_transform is None:
self.mask_transform = transform
else:
self.mask_transform = mask_transform
self.mask_axis = mask_axis
def __getitem__(self, idx):
img = cv2.imread(self.img_files[idx])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = cv2.imread(self.mask_files[idx])
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB)
mask = mask[:, :, self.mask_axis]
seed = random.randint(0, 2 ** 32)
# Apply transform to img
random.seed(seed)
img = Image.fromarray(img)
img = self.transform(img)
# Apply same transform to mask
random.seed(seed)
mask = Image.fromarray(mask)
mask = self.mask_transform(mask)
return img, mask
def __len__(self):
return len(self.img_files)
if __name__ == '__main__':
pass
#
# mask = cv2.imread('{}/masks/Aaron_Peirsol_0001.ppm'.format(IMG_DIR))
# mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB)
# mask = mask[:, :, 0]
# print(mask.shape)
# plt.imshow(mask)
# plt.show()