-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer.py
72 lines (52 loc) · 2.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import torch
class Trainer:
def __init__(self, data_loaders, criterion, device, on_after_epoch=None):
self.data_loaders = data_loaders
self.criterion = criterion
self.device = device
self.history = []
self.on_after_epoch = on_after_epoch
def train(self, model, optimizer, num_epochs):
for epoch in range(num_epochs):
train_epoch_loss = self._train_on_epoch(model, optimizer)
val_epoch_loss = self._val_on_epoch(model, optimizer)
hist = {
'epoch': epoch,
'train_loss': train_epoch_loss,
'val_loss': val_epoch_loss,
}
self.history.append(hist)
if self.on_after_epoch is not None:
self.on_after_epoch(model, pd.DataFrame(self.history))
return pd.DataFrame(self.history)
def _train_on_epoch(self, model, optimizer):
model.train()
data_loader = self.data_loaders[0]
running_loss = 0.0
for inputs, labels in data_loader:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(inputs)
loss = self.criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
return epoch_loss
def _val_on_epoch(self, model, optimizer):
model.eval()
data_loader = self.data_loaders[1]
running_loss = 0.0
for inputs, labels in data_loader:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
with torch.set_grad_enabled(False):
outputs = model(inputs)
loss = self.criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
return epoch_loss