forked from xomniversex/foo_gep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfir_resampler.c
303 lines (252 loc) · 7.47 KB
/
fir_resampler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "fir_resampler.h"
enum { fir_width = 16 };
enum { fir_max_res = 1024 };
enum { fir_min_width = (fir_width < 4 ? 4 : fir_width) };
enum { fir_adj_width = fir_min_width / 4 * 4 + 2 };
enum { fir_stereo = 1 }; /* channel count, not boolean value */
enum { fir_write_offset = fir_adj_width * fir_stereo };
enum { fir_buffer_size = fir_width * 2 };
typedef short fir_impulse[fir_adj_width];
static fir_impulse fir_impulses[fir_max_res];
#undef PI
#define PI 3.1415926535897932384626433832795029
static void gen_sinc( double rolloff, int width, double offset, double spacing, double scale,
int count, short* out )
{
double const maxh = 256;
double const step = PI / maxh * spacing;
double const to_w = maxh * 2 / width;
double const pow_a_n = pow( rolloff, maxh );
double angle = (count / 2 - 1 + offset) * -step;
scale /= maxh * 2;
while ( count-- )
{
double w;
*out++ = 0;
w = angle * to_w;
if ( fabs( w ) < PI )
{
double rolloff_cos_a = rolloff * cos( angle );
double num = 1 - rolloff_cos_a -
pow_a_n * cos( maxh * angle ) +
pow_a_n * rolloff * cos( (maxh - 1) * angle );
double den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
double sinc = scale * num / den - scale;
out [-1] = (short) (cos( w ) * sinc + sinc);
}
angle += step;
}
}
typedef struct fir_resampler
{
int write_pos, write_filled;
int read_pos, read_filled;
unsigned short phase;
unsigned int phase_inc;
float a1, a2, b02, b1;
float yn1, yn2;
int buffer_in[fir_buffer_size * 2];
int buffer_out[fir_buffer_size];
} fir_resampler;
void * fir_resampler_create()
{
fir_resampler * r = ( fir_resampler * ) malloc( sizeof(fir_resampler) );
if ( !r ) return 0;
r->write_pos = 0;
r->write_filled = 0;
r->read_pos = 0;
r->read_filled = 0;
r->phase = 0;
r->phase_inc = 0;
r->a1 = 0; r->a2 = 0;
r->b02 = 0; r->b1 = 0;
r->yn1 = 0; r->yn2 = 0;
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
return r;
}
void fir_resampler_delete(void * _r)
{
free( _r );
}
void * fir_resampler_dup(void * _r)
{
fir_resampler * r_in = ( fir_resampler * ) _r;
fir_resampler * r_out = ( fir_resampler * ) malloc( sizeof(fir_resampler) );
if ( !r_out ) return 0;
r_out->write_pos = r_in->write_pos;
r_out->write_filled = r_in->write_filled;
r_out->read_pos = r_in->read_pos;
r_out->read_filled = r_in->read_filled;
r_out->phase = r_in->phase;
r_out->phase_inc = r_in->phase_inc;
r_out->a1 = r_in->a1;
r_out->a2 = r_in->a2;
r_out->b02 = r_in->b02;
r_out->b1 = r_in->b1;
r_out->yn1 = r_in->yn1;
r_out->yn2 = r_in->yn2;
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
return r_out;
}
int fir_resampler_get_free_count(void *_r)
{
fir_resampler * r = ( fir_resampler * ) _r;
return fir_buffer_size - r->write_filled;
}
int fir_resampler_ready(void *_r)
{
fir_resampler * r = ( fir_resampler * ) _r;
return r->write_filled > fir_adj_width;
}
void fir_resampler_clear(void *_r)
{
fir_resampler * r = ( fir_resampler * ) _r;
r->write_pos = 0;
r->write_filled = 0;
r->read_pos = 0;
r->read_filled = 0;
r->phase = 0;
r->yn1 = 0;
r->yn2 = 0;
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
}
void fir_resampler_set_rate(void *_r, double new_factor)
{
fir_resampler * r = ( fir_resampler * ) _r;
r->phase_inc = (int)( new_factor * 65536.0 );
if ( r->phase_inc > 65536 )
{
double omega = 2 * PI * 0.5 / new_factor;
double cs = cos(omega);
double sn = sin(omega);
double alpha = sn / 2.0;
double a0_inv = 1.0 / (1.0 + alpha);
double b1_temp = (1.0 - cs) * a0_inv;
r->b02 = b1_temp * 0.5;
r->b1 = b1_temp;
r->a1 = -2.0 * cs * a0_inv;
r->a2 = (1.0 - alpha) * a0_inv;
}
}
void fir_resampler_write_sample(void *_r, short s)
{
fir_resampler * r = ( fir_resampler * ) _r;
if ( r->write_filled < fir_buffer_size )
{
int s32 = s;
if ( r->phase_inc > 65536 )
{
/* The filter is implemented in Direct-II form. */
float in, out, dsp_centernode;
in = s32;
dsp_centernode = in - r->a1 * r->yn1 - r->a2 * r->yn2;
out = r->b02 * (dsp_centernode + r->yn2) + r->b1 * r->yn1;
r->yn2 = r->yn1;
r->yn1 = dsp_centernode;
s32 = out;
}
r->buffer_in[ r->write_pos ] = s32;
r->buffer_in[ r->write_pos + fir_buffer_size ] = s32;
++r->write_filled;
r->write_pos = ( r->write_pos + 1 ) % fir_buffer_size;
}
}
void fir_init()
{
double const rolloff = 0.999;
double const gain = 1.0;
int const res = fir_max_res;
double const ratio_ = 1.0 / (double)fir_max_res;
double fraction = fmod( ratio_, 1.0 );
double const filter = (ratio_ < 1.0) ? 1.0 : 1.0 / ratio_;
double pos = 0.0;
//int input_per_cycle = 0;
short* out = (short*) fir_impulses;
int n;
for ( n = res; --n >= 0; )
{
gen_sinc( rolloff, (int) (fir_adj_width * filter + 1) & ~1, pos, filter,
(double) (0x7FFF * gain * filter), (int) fir_adj_width, out );
out += fir_adj_width;
pos += fraction;
}
}
int fir_resampler_run(void *_r, int ** out_, int * out_end)
{
fir_resampler * r = ( fir_resampler * ) _r;
int in_size = r->write_filled;
int const* in_ = r->buffer_in + fir_buffer_size + r->write_pos - r->write_filled;
int used = 0;
in_size -= fir_write_offset;
if ( in_size > 0 )
{
int* out = *out_;
int const* in = in_;
int const* const in_end = in + in_size;
int phase = r->phase;
int phase_inc = r->phase_inc;
do
{
// accumulate in extended precision
short const* imp = fir_impulses[(phase & 0xFFC0) >> 6];
int pt = imp [0];
int s = pt * in [0];
int n;
if ( out >= out_end )
break;
for ( n = (fir_adj_width - 2) / 2; n; --n )
{
pt = imp [1];
s += pt * in [1];
// pre-increment more efficient on some RISC processors
imp += 2;
pt = imp [0];
in += 2;
s += pt * in [0];
}
pt = imp [1];
s += pt * in [1];
phase += phase_inc;
in += (phase >> 16) - fir_adj_width + 2;
phase &= 65535;
*out++ = (int) (s >> 15);
}
while ( in < in_end );
r->phase = phase;
*out_ = out;
used = in - in_;
r->write_filled -= used;
}
return used;
}
int fir_resampler_get_sample(void *_r)
{
fir_resampler * r = ( fir_resampler * ) _r;
if ( r->read_filled < 1 )
{
int write_pos = ( r->read_pos + r->read_filled ) % fir_buffer_size;
int write_size = fir_buffer_size - write_pos;
int * out = r->buffer_out + write_pos;
if ( write_size > ( fir_buffer_size - r->read_filled ) )
write_size = fir_buffer_size - r->read_filled;
fir_resampler_run( r, &out, out + write_size );
r->read_filled += out - r->buffer_out - write_pos;
}
if ( r->read_filled < 1 )
return 0;
return r->buffer_out[ r->read_pos ];
}
void fir_resampler_remove_sample(void *_r)
{
fir_resampler * r = ( fir_resampler * ) _r;
if ( r->read_filled > 0 )
{
--r->read_filled;
r->read_pos = ( r->read_pos + 1 ) % fir_buffer_size;
}
}