-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
442 lines (374 loc) · 17.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# This file imports all the necessary libraries
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from scipy import signal
from keras.models import Sequential, load_model
from keras.layers import TimeDistributed,Conv1D,AveragePooling1D,Flatten,LSTM,Dense,BatchNormalization,Dropout
from keras.callbacks import EarlyStopping
from sklearn.metrics import accuracy_score,classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sn
from keras.utils.vis_utils import plot_model
from tensorflow.keras.utils import to_categorical
from sklearn.datasets import make_blobs
from sklearn.metrics import accuracy_score
from keras.models import Sequential
from keras.layers import Dense
from matplotlib import pyplot
from numpy import mean
from numpy import std
from numpy import array
from numpy import argmax
from numpy import tensordot
from numpy.linalg import norm
from itertools import product
from pickle import load
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.vis_utils import plot_model
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.merge import concatenate
# Loads the dataset used from drive
# Dataset consists of three modalities, i.e. Surface Electro-myogram or sEMG, tri-axis gyroscope and tri-axis accelerometer.
# Signals were captured using six Delsys wireless sensors, consisting of one sEMG sensor and one IMU containing a tri-axis accelerometer and a tri-axis gyroscope each.
from google.colab import drive
drive.mount("/content/drive")
file_path = r'/content/drive/MyDrive/HGR_DL/'
emg = np.load(file_path+'datagen2_emgDom.npy');
acc = np.load(file_path+'datagen2_accDom.npy');
gyr = np.load(file_path+'datagen2_gyrDom.npy');
y_true = np.load(file_path+'datagen2_y_true.npy');
y=np.vstack((y_true,range(0,len(y_true)))).transpose();
chN=3;ax=3;
seglenE = 3000; #int(np.round(1.25*fs[0])); #number of samples to downsample to
seglenA = 400; #int(np.round(1.25*fs[1])); #number of samples to downsample to
n_steps=10;n_lengthE=300; n_lengthA=40;
# sEMG Signal
emg = emg.reshape((emg.shape[0],chN, seglenE));
emg1 = signal.resample(emg, seglenA, t=None, axis=2);
emg = np.transpose(emg,axes=(0,2,1));
emg1 = np.transpose(emg1,axes=(0,2,1));
# Accelerometer Signal
acc = acc.reshape((acc.shape[0],chN*ax, seglenA));
acc = np.transpose(acc,axes=(0,2,1));
# Gyroscope Signal
gyr = gyr.reshape((gyr.shape[0],chN*ax, seglenA));
gyr = np.transpose(gyr,axes=(0,2,1));
# Making a single feature matrix of all three modalities with 5000 samples of each
X = np.concatenate((emg1,acc,gyr),axis=2)
# Reshape
X = X.reshape((X.shape[0],n_steps, n_lengthA,chN+chN*ax*2));
emg = emg.reshape((emg.shape[0],n_steps, n_lengthE,chN));
acc = acc.reshape((acc.shape[0],n_steps, n_lengthA,chN*ax));
gyr = gyr.reshape((gyr.shape[0],n_steps, n_lengthA,chN*ax));
print(X.shape)
print(emg.shape)
print(acc.shape)
print(gyr.shape)
# Reshaped data is split 70-30 where 70 is for the train split and 30 is for the test split.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y_true)
emg_train, emg_test, y_train, y_test = train_test_split(emg, y, test_size=0.3, random_state=1, stratify=y_true)
acc_train, acc_test, y_train, y_test = train_test_split(acc, y, test_size=0.3, random_state=1, stratify=y_true)
gyr_train, gyr_test, y_train, y_test = train_test_split(gyr, y, test_size=0.3, random_state=1, stratify=y_true)
train_idx = y_train[:,1]; y_train = y_train[:,0]
test_idx = y_test[:,1]; y_test = y_test[:,0]
print(emg_train.shape)
print(acc_train.shape)
print(gyr_train.shape)
print(X_train.shape)
print(y_train.shape)
# Convert labels to categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
y_test1 = np.argmax(y_test, axis=1)
X_test1 = np.argmax(X_test, axis=1)
from keras.optimizers import adam_v2
n_outputs = y_train.shape[1]
verbose, epochs, batch_size = 1, 100, 64 #0, 15, 50
adam = adam_v2.Adam(lr=0.002)
es = EarlyStopping(monitor = 'val_accuracy',min_delta = 0.0002, patience = 5, verbose = 1,restore_best_weights = True)
#% multiple input model
n_length, n_features= X_train.shape[2],X_train.shape[3]
n_emg_length, n_emg_features = emg_train.shape[2],emg_train.shape[3]
n_acc_length, n_acc_features = acc_train.shape[2],acc_train.shape[3]
n_gyr_length, n_gyr_features = gyr_train.shape[2],gyr_train.shape[3]
# Knowledge Distiller Class
class Distiller1(tf.keras.Model):
def __init__(self, student, teacher):
super(Distiller1, self).__init__()
self.teacher = teacher
self.student = student
def compile(
self,
optimizer,
metrics,
student_loss_fn,
distillation_loss_fn,
alpha=0.2,
temperature=3,
):
super(Distiller1, self).compile(optimizer=optimizer, metrics=metrics)
self.student_loss_fn = student_loss_fn
self.distillation_loss_fn = distillation_loss_fn
self.alpha = alpha
self.temperature = temperature
def train_step(self, data):
# Unpack data
x, y = data
# Forward pass of teacher
teacher_predictions = self.teacher(x, training=False)
with tf.GradientTape() as tape:
# Forward pass of student
student_predictions = self.student(x, training=True)
# Compute losses
student_loss = self.student_loss_fn(y, student_predictions)
distillation_loss = self.distillation_loss_fn(
tf.nn.softmax(teacher_predictions / self.temperature, axis=1),
tf.nn.softmax(student_predictions / self.temperature, axis=1),
)
loss = self.alpha * student_loss + (1 - self.alpha) * distillation_loss
# Compute gradients
trainable_vars = self.student.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
# Update the metrics configured in `compile()`.
self.compiled_metrics.update_state(y, student_predictions)
# Return a dict of performance
results = {m.name: m.result() for m in self.metrics}
results.update(
{"student_loss": student_loss, "distillation_loss": distillation_loss}
)
return results
def test_step(self, data):
# Unpack the data
x, y = data
# Compute predictions
y_prediction = self.student(x, training=False)
# Calculate the loss
student_loss = self.student_loss_fn(y, y_prediction)
# Update the metrics.
self.compiled_metrics.update_state(y, y_prediction)
# Return a dict of performance
results = {m.name: m.result() for m in self.metrics}
results.update({"student_loss": student_loss})
return results
# Multi Expert Base/Teacher Model
# The Multi Expert Base/Teacher Model used in our study is a multi-channel Deep convolutional network.
# Functional Model 1 was trained on sEMG data
emg_model = Input(shape=(None,n_emg_length,n_emg_features))
emg_conv1 = TimeDistributed(Conv1D(filters=12, kernel_size=7, activation='sigmoid'), input_shape=(None,n_emg_length,n_emg_features))(emg_model)
emg_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=3))(emg_conv1)
emg_conv2 = TimeDistributed(Conv1D(filters=24, kernel_size=7, activation='sigmoid'))(emg_avgpool1)
emg_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=3))(emg_conv2)
emg_flat1 = TimeDistributed(Flatten())(emg_avgpool2)
emg_lstm1 = LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(emg_flat1)
emg_lstm2 = LSTM(100, dropout=0.2, recurrent_dropout=0.2)(emg_lstm1)
emg_batchnorm = BatchNormalization(batch_size = batch_size)(emg_lstm2)
emg_drop = Dropout(0.2)(emg_batchnorm)
# Functional Model 2 was trained on Accelerometer data
acc_model = Input(shape=(None,n_acc_length,n_acc_features))
acc_conv1 = TimeDistributed(Conv1D(filters=12, kernel_size=7, activation='sigmoid'), input_shape=(None,n_acc_length,n_acc_features))(acc_model)
acc_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=3))(acc_conv1)
acc_conv2 = TimeDistributed(Conv1D(filters=24, kernel_size=7, activation='sigmoid'))(acc_avgpool1)
acc_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=3))(acc_conv2)
acc_flat1 = TimeDistributed(Flatten())(acc_avgpool2)
acc_lstm1 = LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(acc_flat1)
acc_lstm2 = LSTM(100, dropout=0.2, recurrent_dropout=0.2)(acc_lstm1)
acc_batchnorm = BatchNormalization(batch_size = batch_size)(acc_lstm2)
acc_drop = Dropout(0.2)(acc_batchnorm)
# Functional Model 3 was trained on Gyroscope data
gyr_model = Input(shape=(None,n_gyr_length,n_gyr_features))
gyr_conv1 = TimeDistributed(Conv1D(filters=12, kernel_size=7, activation='sigmoid'), input_shape=(None,n_gyr_length,n_gyr_features))(gyr_model)
gyr_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=3))(gyr_conv1)
gyr_conv2 = TimeDistributed(Conv1D(filters=24, kernel_size=7, activation='sigmoid'))(gyr_avgpool1)
gyr_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=3))(gyr_conv2)
gyr_flat1 = TimeDistributed(Flatten())(gyr_avgpool2)
gyr_lstm1 = LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(gyr_flat1)
gyr_lstm2 = LSTM(100, dropout=0.2, recurrent_dropout=0.2)(gyr_lstm1)
gyr_batchnorm = BatchNormalization(batch_size = batch_size)(gyr_lstm2)
gyr_drop = Dropout(0.2)(gyr_batchnorm)
# All three models are concatenated
merged = concatenate([emg_drop, acc_drop, gyr_drop])
dense1 = Dense(n_outputs, activation='softmax')(merged)
model = Model(inputs=[emg_model, acc_model, gyr_model], outputs=dense1)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# summarize
print(model.summary())
# define model
hist1 = model.fit([emg_train, acc_train, gyr_train], y_train, epochs=epochs, batch_size=batch_size, verbose=True, validation_data=([emg_test, acc_test, gyr_test], y_test)) #, epochs=epochs,callbacks=[es]
hist_arr1 = np.array([hist1.history['accuracy'],hist1.history['val_accuracy'],hist1.history['loss'],hist1.history['val_loss']])
## Model Result/Performance Plots
# Test Accuracy
plt.figure(1)
plt.plot(hist_arr1[1])
plt.ylabel('Test Accuracy (%)')
plt.xlabel('Epoch')
plt.grid(True)
plt.ylim(0.25,1.05)
# Validation Accuracy
plt.figure(2)
plt.plot(hist_arr1[0])
plt.ylabel('Train Accuracy (%)')
plt.xlabel('Epoch')
plt.grid(True)
plt.ylim(0.25,1.05)
# Test Loss
plt.figure(3)
plt.plot(hist_arr1[3])
plt.ylabel('Test Loss')
plt.xlabel('Epoch')
plt.grid(True)
# Validation Loss
plt.figure(4)
plt.plot(hist_arr1[2])
plt.ylabel('Train Loss')
plt.xlabel('Epoch')
plt.grid(True)
# Multi Expert Student Model
# The Multi Expert Student Model used in our study is a multi-channel Deep convolutional network.
# Functional Model 1 was trained on sEMG data
stu_emg_model = Input(shape=(None,n_emg_length,n_emg_features))
stu_emg_conv1 = TimeDistributed(Conv1D(filters=2, kernel_size=4, activation='sigmoid'), input_shape=(None,n_emg_length,n_emg_features))(stu_emg_model)
stu_emg_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_emg_conv1)
stu_emg_conv2 = TimeDistributed(Conv1D(filters=4, kernel_size=4, activation='sigmoid'))(stu_emg_avgpool1)
stu_emg_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_emg_conv2)
stu_emg_flat1 = TimeDistributed(Flatten())(stu_emg_avgpool2)
stu_emg_lstm1 = LSTM(50, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(stu_emg_flat1)
stu_emg_lstm2 = LSTM(50, dropout=0.2, recurrent_dropout=0.2)(stu_emg_lstm1)
stu_emg_batchnorm = BatchNormalization(batch_size = batch_size)(stu_emg_lstm2)
stu_emg_drop = Dropout(0.2)(stu_emg_batchnorm)
# Functional Model 2 was trained on Accelerometer data
stu_acc_model = Input(shape=(None,n_acc_length,n_acc_features))
stu_acc_conv1 = TimeDistributed(Conv1D(filters=2, kernel_size=4, activation='sigmoid'), input_shape=(None,n_acc_length,n_acc_features))(stu_acc_model)
stu_acc_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_acc_conv1)
stu_acc_conv2 = TimeDistributed(Conv1D(filters=4, kernel_size=4, activation='sigmoid'))(stu_acc_avgpool1)
stu_acc_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_acc_conv2)
stu_acc_flat1 = TimeDistributed(Flatten())(stu_acc_avgpool2)
stu_acc_lstm1 = LSTM(50, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(stu_acc_flat1)
stu_acc_lstm2 = LSTM(50, dropout=0.2, recurrent_dropout=0.2)(stu_acc_lstm1)
stu_acc_batchnorm = BatchNormalization(batch_size = batch_size)(stu_acc_lstm2)
stu_acc_drop = Dropout(0.2)(stu_acc_batchnorm)
# Functional Model 3 was trained on Gyroscope data
stu_gyr_model = Input(shape=(None,n_gyr_length,n_gyr_features))
stu_gyr_conv1 = TimeDistributed(Conv1D(filters=2, kernel_size=4, activation='sigmoid'), input_shape=(None,n_gyr_length,n_gyr_features))(stu_gyr_model)
stu_gyr_avgpool1 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_gyr_conv1)
stu_gyr_conv2 = TimeDistributed(Conv1D(filters=4, kernel_size=4, activation='sigmoid'))(stu_gyr_avgpool1)
stu_gyr_avgpool2 = TimeDistributed(AveragePooling1D(pool_size=2))(stu_gyr_conv2)
stu_gyr_flat1 = TimeDistributed(Flatten())(stu_gyr_avgpool2)
stu_gyr_lstm1 = LSTM(50, dropout=0.2, recurrent_dropout=0.2, return_sequences = True)(stu_gyr_flat1)
stu_gyr_lstm2 = LSTM(50, dropout=0.2, recurrent_dropout=0.2)(stu_gyr_lstm1)
stu_gyr_batchnorm = BatchNormalization(batch_size = batch_size)(stu_gyr_lstm2)
stu_gyr_drop = Dropout(0.2)(stu_gyr_batchnorm)
# All three models are concatenated
stu_merged = concatenate([stu_emg_drop, stu_acc_drop, stu_gyr_drop])
stu_dense1 = Dense(n_outputs, activation='softmax')(stu_merged)
stu_model = Model(inputs=[stu_emg_model, stu_acc_model, stu_gyr_model], outputs=stu_dense1)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# summarize
print(stu_model.summary())
#Distill Student to Teacher
distiller = Distiller1(student=stu_model, teacher=model) #invokes the KD class
distiller.compile(
optimizer=adam,
metrics=['accuracy'],
student_loss_fn=keras.losses.CategoricalCrossentropy(from_logits=True),
distillation_loss_fn=keras.losses.KLDivergence(),
alpha=0.1,
temperature=5,
)
hist2= distiller.fit([emg_train, acc_train, gyr_train], y_train, epochs=50, batch_size=batch_size, verbose=True, validation_data=([emg_test, acc_test, gyr_test], y_test)) #, epochs=epochs,callbacks=[es]
hist_arr2 = np.array([hist2.history['accuracy'],hist2.history['student_loss'],hist2.history['distillation_loss'],hist2.history['val_accuracy'],hist2.history['val_student_loss']])
# Test Accuracy
plt.figure(5)
plt.plot(hist_arr2[0])
plt.ylabel('Test Accuracy (%)')
plt.xlabel('Epoch')
plt.grid(True)
# Validation Accuracy
plt.figure(2)
plt.plot(hist_arr2[3])
plt.ylabel('Train Accuracy (%)')
plt.xlabel('Epoch')
plt.grid(True)
# Test Loss
plt.figure(3)
plt.plot(hist_arr2[1])
plt.ylabel('Test Loss')
plt.xlabel('Epoch')
plt.grid(True)
# Validation Loss
plt.figure(4)
plt.plot(hist_arr2[4])
plt.ylabel('Train Loss')
plt.xlabel('Epoch')
plt.grid(True)
# Distillation Loss
plt.figure(4)
plt.plot(hist_arr2[2])
plt.ylabel('Teacher over Student Distillation Loss')
plt.xlabel('Epoch')
plt.grid(True)
# Base Model Accuracy
y1_pred = model.evaluate([emg_test, acc_test, gyr_test], y_test, verbose=0)[1]
print("Base Model Accuracy:","{:.3f}%".format(y1_pred*100))
# Distilled Model Accuracy
y2_pred = distiller.evaluate([emg_test, acc_test, gyr_test], y_test, verbose=0)[1]
print("Distilled Model Accuracy","{:.3f}%".format(y2_pred*100))
# Set base model type to .h5 and save to acquire size
import tempfile
import os
_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved basel model to:', keras_file)
# Set student model type to .h5 and save to acquire size
import tempfile
import os
_, KD_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(stu_model, KD_keras_file, include_optimizer=False)
print('Saved Distilled Keras model to:', KD_keras_file)
def get_gzipped_model_size(file):
# Returns size of gzipped model, in bytes.
import os
import zipfile
_, zipped_file = tempfile.mkstemp('.zip')
with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
f.write(file)
return os.path.getsize(zipped_file)
print("Size of Base Model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of Distilled Model: %.2f bytes" % (get_gzipped_model_size(KD_keras_file)))
# Bar graph for size comparison
data = {'Size of Base Mode':get_gzipped_model_size(keras_file)}
data1 = {'Size of Distilled Model':get_gzipped_model_size(KD_keras_file)}
modell = list(data.keys())
size = list(data.values())
modelll = list(data1.keys())
sizee = list(data1.values())
sizees = [get_gzipped_model_size(keras_file),get_gzipped_model_size(KD_keras_file)]
sizeees = [get_gzipped_model_size(KD_keras_file),get_gzipped_model_size(keras_file)]
fig = plt.figure(figsize = (10, 5))
for x, y, p in zip(modell, size, sizees):
plt.text(x, y, p)
for x1, y1, p1 in zip(modelll, sizee,sizeees):
plt.text(x1, y1, p1)
# creating the bar plot
plt.bar(modell, size, color ='maroon',
width = 0.4)
plt.bar(modelll,sizee, color = 'pink', width = 0.4)
plt.ylabel("Size of Model in MB")
plt.xlabel("Model Name")
plt.title("Size difference through Knowledge Distillation")
plt.show()