@@ -182,7 +182,7 @@ int main(int argc, char *argv[])
182
182
storage.get_masks ()[step]);
183
183
}
184
184
auto actions_tensor = act_result[1 ].cpu ().to (torch::kFloat );
185
- float *actions_array = actions_tensor.data <float >();
185
+ float *actions_array = actions_tensor.data_ptr <float >();
186
186
std::vector<std::vector<float >> actions (num_envs);
187
187
for (int i = 0 ; i < num_envs; ++i)
188
188
{
@@ -218,7 +218,7 @@ int main(int argc, char *argv[])
218
218
returns_rms->update (returns);
219
219
reward_tensor = torch::clamp (reward_tensor / torch::sqrt (returns_rms->get_variance () + 1e-8 ),
220
220
-reward_clip_value, reward_clip_value);
221
- rewards = std::vector<float >(reward_tensor.data <float >(), reward_tensor.data <float >() + reward_tensor.numel ());
221
+ rewards = std::vector<float >(reward_tensor.data_ptr <float >(), reward_tensor.data_ptr <float >() + reward_tensor.numel ());
222
222
real_rewards = flatten_vector (step_result->real_reward );
223
223
dones_vec = step_result->done ;
224
224
}
@@ -233,7 +233,7 @@ int main(int argc, char *argv[])
233
233
returns_rms->update (returns);
234
234
reward_tensor = torch::clamp (reward_tensor / torch::sqrt (returns_rms->get_variance () + 1e-8 ),
235
235
-reward_clip_value, reward_clip_value);
236
- rewards = std::vector<float >(reward_tensor.data <float >(), reward_tensor.data <float >() + reward_tensor.numel ());
236
+ rewards = std::vector<float >(reward_tensor.data_ptr <float >(), reward_tensor.data_ptr <float >() + reward_tensor.numel ());
237
237
real_rewards = flatten_vector (step_result->real_reward );
238
238
dones_vec = step_result->done ;
239
239
}
0 commit comments