|
72 | 72 | "output_type": "stream",
|
73 | 73 | "text": [
|
74 | 74 | "Predicting with theta = [1,0], should return the first rdm, which is:\n",
|
75 |
| - "[[0.20529161 0.18219921 0.14234779 0.15184744 0.21434174 0.1876438\n", |
76 |
| - " 0.23245372 0.16816806 0.11574728 0.21842971]]\n", |
| 75 | + "[[0.17948311 0.13203485 0.13632945 0.18298594 0.15166647 0.16234362\n", |
| 76 | + " 0.14637612 0.12058838 0.15784657 0.12497874]]\n", |
77 | 77 | "The output of the model is:\n",
|
78 |
| - "[0.20529161 0.18219921 0.14234779 0.15184744 0.21434174 0.1876438\n", |
79 |
| - " 0.23245372 0.16816806 0.11574728 0.21842971]\n", |
| 78 | + "[0.17948311 0.13203485 0.13632945 0.18298594 0.15166647 0.16234362\n", |
| 79 | + " 0.14637612 0.12058838 0.15784657 0.12497874]\n", |
80 | 80 | "Which is indeed identical\n",
|
81 | 81 | "\n",
|
82 | 82 | "Predicting with theta = [0,1], should return the second rdm, which is:\n",
|
83 |
| - "[[0.21021824 0.09930457 0.16356345 0.20092431 0.18402425 0.19685312\n", |
84 |
| - " 0.13494642 0.13652705 0.1714637 0.12152749]]\n", |
| 83 | + "[[0.14265908 0.17005546 0.18177815 0.1564901 0.13836761 0.17725487\n", |
| 84 | + " 0.09220979 0.24478309 0.15514355 0.20351734]]\n", |
85 | 85 | "The output of the model is:\n",
|
86 |
| - "[0.21021824 0.09930457 0.16356345 0.20092431 0.18402425 0.19685312\n", |
87 |
| - " 0.13494642 0.13652705 0.1714637 0.12152749]\n", |
| 86 | + "[0.14265908 0.17005546 0.18177815 0.1564901 0.13836761 0.17725487\n", |
| 87 | + " 0.09220979 0.24478309 0.15514355 0.20351734]\n", |
88 | 88 | "Which is indeed identical\n",
|
89 | 89 | "\n",
|
90 | 90 | "Predicting with theta = [1,1], should return the sum of the first two rdms, which is:\n",
|
91 |
| - "[[0.41550985 0.28150378 0.30591124 0.35277176 0.39836599 0.38449692\n", |
92 |
| - " 0.36740013 0.3046951 0.28721099 0.3399572 ]]\n", |
| 91 | + "[[0.32214218 0.30209031 0.3181076 0.33947604 0.29003408 0.33959849\n", |
| 92 | + " 0.23858592 0.36537148 0.31299012 0.32849607]]\n", |
93 | 93 | "The output of the model is:\n",
|
94 |
| - "[0.41550985 0.28150378 0.30591124 0.35277176 0.39836599 0.38449692\n", |
95 |
| - " 0.36740013 0.3046951 0.28721099 0.3399572 ]\n", |
| 94 | + "[0.32214218 0.30209031 0.3181076 0.33947604 0.29003408 0.33959849\n", |
| 95 | + " 0.23858592 0.36537148 0.31299012 0.32849607]\n", |
96 | 96 | "Which is indeed identical\n"
|
97 | 97 | ]
|
98 | 98 | }
|
|
136 | 136 | "squared euclidean\n",
|
137 | 137 | "\n",
|
138 | 138 | "dissimilarities[0] = \n",
|
139 |
| - "[[0. 0.20529161 0.18219921 0.14234779 0.15184744]\n", |
140 |
| - " [0.20529161 0. 0.21434174 0.1876438 0.23245372]\n", |
141 |
| - " [0.18219921 0.21434174 0. 0.16816806 0.11574728]\n", |
142 |
| - " [0.14234779 0.1876438 0.16816806 0. 0.21842971]\n", |
143 |
| - " [0.15184744 0.23245372 0.11574728 0.21842971 0. ]]\n", |
| 139 | + "[[0. 0.17948311 0.13203485 0.13632945 0.18298594]\n", |
| 140 | + " [0.17948311 0. 0.15166647 0.16234362 0.14637612]\n", |
| 141 | + " [0.13203485 0.15166647 0. 0.12058838 0.15784657]\n", |
| 142 | + " [0.13632945 0.16234362 0.12058838 0. 0.12497874]\n", |
| 143 | + " [0.18298594 0.14637612 0.15784657 0.12497874 0. ]]\n", |
144 | 144 | "\n",
|
145 | 145 | "descriptors: \n",
|
146 | 146 | "\n",
|
|
161 | 161 | "squared euclidean\n",
|
162 | 162 | "\n",
|
163 | 163 | "dissimilarities[0] = \n",
|
164 |
| - "[[0. 0.20529161 0.18219921 0.14234779 0.15184744]\n", |
165 |
| - " [0.20529161 0. 0.21434174 0.1876438 0.23245372]\n", |
166 |
| - " [0.18219921 0.21434174 0. 0.16816806 0.11574728]\n", |
167 |
| - " [0.14234779 0.1876438 0.16816806 0. 0.21842971]\n", |
168 |
| - " [0.15184744 0.23245372 0.11574728 0.21842971 0. ]]\n", |
| 164 | + "[[0. 0.17948311 0.13203485 0.13632945 0.18298594]\n", |
| 165 | + " [0.17948311 0. 0.15166647 0.16234362 0.14637612]\n", |
| 166 | + " [0.13203485 0.15166647 0. 0.12058838 0.15784657]\n", |
| 167 | + " [0.13632945 0.16234362 0.12058838 0. 0.12497874]\n", |
| 168 | + " [0.18298594 0.14637612 0.15784657 0.12497874 0. ]]\n", |
169 | 169 | "\n",
|
170 | 170 | "descriptors: \n",
|
171 | 171 | "\n",
|
|
209 | 209 | "output_type": "stream",
|
210 | 210 | "text": [
|
211 | 211 | "Theta based on optimization:\n",
|
212 |
| - "[0.54167376 0.8405888 ]\n", |
| 212 | + "[0.94571213 0.32500549]\n", |
213 | 213 | "Theta based on fit_regress:\n",
|
214 |
| - "[0.54166958 0.8405915 ]\n" |
| 214 | + "[0.94571213 0.32500548]\n" |
215 | 215 | ]
|
216 | 216 | }
|
217 | 217 | ],
|
|
245 | 245 | {
|
246 | 246 | "data": {
|
247 | 247 | "text/plain": [
|
248 |
| - "(<Figure size 144x144 with 1 Axes>,\n", |
249 |
| - " array([[<AxesSubplot:>]], dtype=object),\n", |
| 248 | + "(<Figure size 200x200 with 1 Axes>,\n", |
| 249 | + " array([[<AxesSubplot: >]], dtype=object),\n", |
250 | 250 | " defaultdict(dict,\n",
|
251 |
| - " {<AxesSubplot:>: {'image': <matplotlib.image.AxesImage at 0x7fba190f22e0>}}))" |
| 251 | + " {<AxesSubplot: >: {'image': <matplotlib.image.AxesImage at 0x17f6279d0>}}))" |
252 | 252 | ]
|
253 | 253 | },
|
254 | 254 | "execution_count": 6,
|
|
257 | 257 | },
|
258 | 258 | {
|
259 | 259 | "data": {
|
260 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHsAAAB7CAYAAABUx/9/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAACWklEQVR4nO3dsWoUURhH8f8Viy232C1i4ySNhWCVcp8ibCpLQWx9CGvxASSNgYAh3b7FTmsppE1CIGIpXgvb3anujeA5v/bCNwOHmerb2VJrjRie/Osb0OMxNoixQYwNYmwQY4M8nTpcLBZ1GIYOlx07zEzG8aD5zNnhrPnMJDm6v+8y99vDw12tdbnrbDL2MAzZbrcdbql0mJmU8rb5zKMPL5rPTJKL8/Muc19tNtf7znyNgxgbxNggxgYxNoixQYwNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBplcOPy7BdpjObDPjwlvXre/11+fmo9Mknx/d9Zn8Gaz98gnG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggxgYxNoixQSa3S8fxoMsnIntsgSbJ8kv7rdXy8XPzmUmSn7/7zJ3gkw1ibBBjgxgbxNggxgYxNoixQYwNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBtkcuFwdjjr8v/RvT4R2WM5sL5/03xmkpxeXXWZezlx5pMNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggpdb9n4B8OZ/Xi9Wq+UV/rNfNZybJqsMnItfP5s1nJsnXk5Muc0spY631eNeZTzaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggxgYxNoixQYwNYmwQY4NMbpeWUm6TXD/e7aiB57XW5a6Dydj6v/gaBzE2iLFBjA1ibJA/T8ZLZyukztQAAAAASUVORK5CYII=\n", |
| 260 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAACuCAYAAACvDDbuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAADx0lEQVR4nO3csWpbZxjH4Vd2nKmS1tboQLyGQKF7IbfREsjWJSUXEELHQju00LHQudlC5y7pHeQWjIx2HQ1JiNHppNAOlY8b21/+7fPMH34/WT8OR8s7GYZhKAhz0PoC8G8Il0jCJZJwiSRcIgmXSMIlknCJdGvMoe12W6vVqqbTaU0mk+u+E/9TwzDUZrOp4+PjOjjY/0wdFe5qtaqu667kcnCR5XJZi8Vi75lR4U6n03d/cDabvf/NLunl6emNz9x59OWjJnO77m6TuVVVz55932Ru3/fVdd273vYZFe7u9WA2mzUJ96MRH+S6HB6O+hdduaOj203mVlWT7/ivxryO+nFGJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RLrXR7eXpaZMFdJ/duXPjM3dOTj5tMvfh0wdN5laNWzrXmicukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEukyTAMw0WH+r6v+Xxe9+59XoeHl9pMeiVarfqsqnr+/Mcmc796/G2TuVVVn5x83GTum9ev6rsnX9d6va7ZbLb3rCcukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RLrV6sevu1tHR7eu6yz96+PTBjc/cabU18eefnjSZW1V1//4XTeaen78dfdYTl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIl0mQYhuGiQ33f13w+r/V6XbPZ7Cbu9TeTyeTGZ+5888MvTeb+8dvvTeZWVb148WuTuZfpzBOXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIt8Yc2i107Pv+Wi/zIXrz+lWTuefnb5vMrWr3Pe/mjlggOm7N6NnZWXVd9/43gxGWy2UtFou9Z0aFu91ua7Va1XQ6bbqrlv+2YRhqs9nU8fFxHRzsf4sdFS58aPw4I5JwiSRcIgmXSMIlknCJJFwi/Qmeoo0IvbUyEAAAAABJRU5ErkJggg==", |
261 | 261 | "text/plain": [
|
262 |
| - "<Figure size 144x144 with 1 Axes>" |
| 262 | + "<Figure size 200x200 with 1 Axes>" |
263 | 263 | ]
|
264 | 264 | },
|
265 | 265 | "metadata": {},
|
266 | 266 | "output_type": "display_data"
|
267 | 267 | },
|
268 | 268 | {
|
269 | 269 | "data": {
|
270 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHsAAAB7CAYAAABUx/9/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAACWklEQVR4nO3dsWoUURhH8f8Viy232C1i4ySNhWCVcp8ibCpLQWx9CGvxASSNgYAh3b7FTmsppE1CIGIpXgvb3anujeA5v/bCNwOHmerb2VJrjRie/Osb0OMxNoixQYwNYmwQY4M8nTpcLBZ1GIYOlx07zEzG8aD5zNnhrPnMJDm6v+8y99vDw12tdbnrbDL2MAzZbrcdbql0mJmU8rb5zKMPL5rPTJKL8/Muc19tNtf7znyNgxgbxNggxgYxNoixQYwNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBplcOPy7BdpjObDPjwlvXre/11+fmo9Mknx/d9Zn8Gaz98gnG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggxgYxNoixQSa3S8fxoMsnIntsgSbJ8kv7rdXy8XPzmUmSn7/7zJ3gkw1ibBBjgxgbxNggxgYxNoixQYwNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBtkcuFwdjjr8v/RvT4R2WM5sL5/03xmkpxeXXWZezlx5pMNYmwQY4MYG8TYIMYGMTaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggpdb9n4B8OZ/Xi9Wq+UV/rNfNZybJqsMnItfP5s1nJsnXk5Muc0spY631eNeZTzaIsUGMDWJsEGODGBvE2CDGBjE2iLFBjA1ibBBjgxgbxNggxgYxNoixQYwNYmwQY4NMbpeWUm6TXD/e7aiB57XW5a6Dydj6v/gaBzE2iLFBjA1ibJA/T8ZLZyukztQAAAAASUVORK5CYII=\n", |
| 270 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAACuCAYAAACvDDbuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAADx0lEQVR4nO3csWpbZxjH4Vd2nKmS1tboQLyGQKF7IbfREsjWJSUXEELHQju00LHQudlC5y7pHeQWjIx2HQ1JiNHppNAOlY8b21/+7fPMH34/WT8OR8s7GYZhKAhz0PoC8G8Il0jCJZJwiSRcIgmXSMIlknCJdGvMoe12W6vVqqbTaU0mk+u+E/9TwzDUZrOp4+PjOjjY/0wdFe5qtaqu667kcnCR5XJZi8Vi75lR4U6n03d/cDabvf/NLunl6emNz9x59OWjJnO77m6TuVVVz55932Ru3/fVdd273vYZFe7u9WA2mzUJ96MRH+S6HB6O+hdduaOj203mVlWT7/ivxryO+nFGJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RLrXR7eXpaZMFdJ/duXPjM3dOTj5tMvfh0wdN5laNWzrXmicukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEukyTAMw0WH+r6v+Xxe9+59XoeHl9pMeiVarfqsqnr+/Mcmc796/G2TuVVVn5x83GTum9ev6rsnX9d6va7ZbLb3rCcukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RhEsk4RJJuEQSLpGESyThEkm4RBIukYRLJOESSbhEEi6RLrV6sevu1tHR7eu6yz96+PTBjc/cabU18eefnjSZW1V1//4XTeaen78dfdYTl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIl0mQYhuGiQ33f13w+r/V6XbPZ7Cbu9TeTyeTGZ+5888MvTeb+8dvvTeZWVb148WuTuZfpzBOXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIwiWScIkkXCIJl0jCJZJwiSRcIgmXSMIlknCJJFwiCZdIt8Yc2i107Pv+Wi/zIXrz+lWTuefnb5vMrWr3Pe/mjlggOm7N6NnZWXVd9/43gxGWy2UtFou9Z0aFu91ua7Va1XQ6bbqrlv+2YRhqs9nU8fFxHRzsf4sdFS58aPw4I5JwiSRcIgmXSMIlknCJJFwi/Qmeoo0IvbUyEAAAAABJRU5ErkJggg==", |
271 | 271 | "text/plain": [
|
272 |
| - "<Figure size 144x144 with 1 Axes>" |
| 272 | + "<Figure size 200x200 with 1 Axes>" |
273 | 273 | ]
|
274 | 274 | },
|
275 | 275 | "metadata": {},
|
|
301 | 301 | "name": "stdout",
|
302 | 302 | "output_type": "stream",
|
303 | 303 | "text": [
|
304 |
| - "[0.54171328 0.84056334]\n", |
| 304 | + "[0.94571213 0.32500549]\n", |
305 | 305 | "the used fitting function was:\n",
|
306 |
| - "<function fit_optimize at 0x7fba18bdb9d0>\n" |
| 306 | + "<function fit_optimize at 0x153191000>\n" |
307 | 307 | ]
|
308 | 308 | }
|
309 | 309 | ],
|
|
338 | 338 | "name": "stdout",
|
339 | 339 | "output_type": "stream",
|
340 | 340 | "text": [
|
341 |
| - "[-0.04123096 0.99914964]\n", |
342 |
| - "[-0.04123086 0.99914965]\n", |
343 |
| - "[-0.04122998 0.99914968]\n" |
| 341 | + "[ 0.996767 -0.08034645]\n", |
| 342 | + "[ 0.996767 -0.08034645]\n", |
| 343 | + "[ 0.996767 -0.08034647]\n" |
344 | 344 | ]
|
345 | 345 | }
|
346 | 346 | ],
|
|
378 | 378 | "output_type": "stream",
|
379 | 379 | "text": [
|
380 | 380 | "The average correlation for the correlation parameters is:\n",
|
381 |
| - "0.20919570220266936\n", |
| 381 | + "0.0890392385172882\n", |
382 | 382 | "The average correlation for the cosine similarity parameters is:\n",
|
383 |
| - "0.1648685520549055\n", |
| 383 | + "0.06085602619789239\n", |
384 | 384 | "The average cosine similarity for the correlation parameters is:\n",
|
385 |
| - "0.9609090694876308\n", |
| 385 | + "0.9649654254976477\n", |
386 | 386 | "The average cosine similarity for the cosine similarity parameters is:\n",
|
387 |
| - "0.9712386973494105\n" |
| 387 | + "0.9721299166013238\n" |
388 | 388 | ]
|
389 | 389 | }
|
390 | 390 | ],
|
|
432 | 432 | ],
|
433 | 433 | "metadata": {
|
434 | 434 | "kernelspec": {
|
435 |
| - "display_name": "Python 3", |
| 435 | + "display_name": "env", |
436 | 436 | "language": "python",
|
437 | 437 | "name": "python3"
|
438 | 438 | },
|
|
446 | 446 | "name": "python",
|
447 | 447 | "nbconvert_exporter": "python",
|
448 | 448 | "pygments_lexer": "ipython3",
|
449 |
| - "version": "3.8.8" |
| 449 | + "version": "3.10.4" |
| 450 | + }, |
| 451 | + "vscode": { |
| 452 | + "interpreter": { |
| 453 | + "hash": "af6f0c1be22da210ce14b764d3d407b4e31df46360687c396ac7d1fbf0a9a76f" |
| 454 | + } |
450 | 455 | }
|
451 | 456 | },
|
452 | 457 | "nbformat": 4,
|
|
0 commit comments