Skip to content

Commit eeef665

Browse files
committedSep 15, 2022
adding dtpinn paper and cv
1 parent 15f5b73 commit eeef665

13 files changed

+71
-6
lines changed
 

‎.jekyll-cache/Jekyll/Cache/Jekyll--Converters--Markdown/d0/13dc87159a0c22d04a3455bb15f54ba17a6f9192baf26fba6e6820a0a8dba5

-2
This file was deleted.

‎.jekyll-metadata

751 Bytes
Binary file not shown.

‎_layouts/default.html

+2-1
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,8 @@ <h1>
6565
<a href="https://scholar.google.com/citations?user=lUmqHckAAAAJ&hl=en">Google Scholar</a> &nbsp;/&nbsp;
6666
<a href="https://github.com/ramanshsharma2806">GitHub</a> &nbsp;/&nbsp;
6767
<a href="https://twitter.com/ramanshsharma1">Twitter</a> &nbsp;/&nbsp;
68-
<a href="https://www.linkedin.com/in/ramanshsharma">LinkedIn</a>
68+
<a href="https://www.linkedin.com/in/ramanshsharma">LinkedIn</a> &nbsp;/&nbsp;
69+
<a href="/docs/Ramansh_Sharma_Resume.pdf">CV</a>
6970
</p>
7071
</td>
7172
<td style="padding:2.5%;width:40%;max-width:40%">

‎_posts/2021-08-14-kddpaper.markdown

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ image: /images/kddpaper.png
66
categories: research
77
author: "Ramansh Sharma"
88
authors: "Jordi Planas, Daniel Firebanks-Quevedo, Galina Naydenova, <strong>Ramansh Sharma</strong>, Cristina Taylor, Kathleen Buckingham, Rong Fang"
9-
venue: "Fragile Earth proceedings - KDD 2021"
9+
venue: "Fragile Earth proceedings - KDD"
1010
paper: /docs/kddpaper.pdf
1111
code: https://github.com/wri-dssg-omdena/policy-data-analyzer
1212
arxiv: https://arxiv.org/abs/2201.07105

‎_posts/2022-09-15-dtpinn.markdown

+15
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
---
2+
layout: post
3+
title: "Accelerated Training of Physics Informed Neural Networks (PINNs) using Meshless Discretizations"
4+
date: 2022-09-15 01:59:59 +00:00
5+
image: /images/dtpinn.png
6+
categories: research
7+
author: "Ramansh Sharma"
8+
authors: "<strong>Ramansh Sharma</strong>, Varun Shankar"
9+
venue: "Neural Information Processing Systems (NeurIPS)"
10+
paper: /docs/dtpinn.pdf
11+
code: https://github.com/ramanshsharma2806/dt-pinn
12+
arxiv: https://arxiv.org/abs/2205.09332
13+
---
14+
15+
We present a new technique for the accelerated training of physics-informed neural networks (PINNs): discretely-trained PINNs (DT-PINNs). DT-PINNs are trained by replacing exact spatial derivatives with high-order accurate numerical discretizations computed using meshless radial basis function-finite differences (RBF-FD) and applied via sparse-matrix vector multiplication. Additionally, though traditional PINNs (vanilla-PINNs) are typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show that for DT-PINNs, using fp64 on the GPU leads to significantly faster training times than fp32 vanilla-PINNs with comparable accuracy. Our results show that fp64 DT-PINNs offer a superior cost-accuracy profile to fp32 vanilla-PINNs.

‎_site/docs/Ramansh_Sharma_Resume.pdf

53.4 KB
Binary file not shown.

‎_site/docs/dtpinn.pdf

1.21 MB
Binary file not shown.

‎_site/images/dtpinn.png

336 KB
Loading

‎_site/index.html

+41-2
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,8 @@ <h1>
6565
<a href="https://scholar.google.com/citations?user=lUmqHckAAAAJ&hl=en">Google Scholar</a> &nbsp;/&nbsp;
6666
<a href="https://github.com/ramanshsharma2806">GitHub</a> &nbsp;/&nbsp;
6767
<a href="https://twitter.com/ramanshsharma1">Twitter</a> &nbsp;/&nbsp;
68-
<a href="https://www.linkedin.com/in/ramanshsharma">LinkedIn</a>
68+
<a href="https://www.linkedin.com/in/ramanshsharma">LinkedIn</a> &nbsp;/&nbsp;
69+
<a href="/docs/Ramansh_Sharma_Resume.pdf">CV</a>
6970
</p>
7071
</td>
7172
<td style="padding:2.5%;width:40%;max-width:40%">
@@ -126,6 +127,40 @@ <h2>Research</h2>
126127

127128

128129

130+
<tr>
131+
<td style="padding:2.5%;width:25%;vertical-align:middle;min-width:120px">
132+
<img src="/images/dtpinn.png" alt="project image" style="width:auto; height:auto; max-width:100%;" />
133+
</td>
134+
<td style="padding:2.5%;width:75%;vertical-align:middle">
135+
<h3>Accelerated Training of Physics Informed Neural Networks (PINNs) using Meshless Discretizations</h3>
136+
<br>
137+
<strong>Ramansh Sharma</strong>, Varun Shankar
138+
139+
<br>
140+
<em>Neural Information Processing Systems (NeurIPS)</em>, 2022
141+
<br>
142+
143+
<a href="/docs/dtpinn.pdf">paper</a> /
144+
145+
146+
<a href="https://arxiv.org/abs/2205.09332">arxiv</a> /
147+
148+
149+
<a href="https://github.com/ramanshsharma2806/dt-pinn">code</a> /
150+
151+
152+
<!-- -->
153+
<!-- -->
154+
<p></p>
155+
<p>We present a new technique for the accelerated training of physics-informed neural networks (PINNs): discretely-trained PINNs (DT-PINNs). DT-PINNs are trained by replacing exact spatial derivatives with high-order accurate numerical discretizations computed using meshless radial basis function-finite differences (RBF-FD) and applied via sparse-matrix vector multiplication. Additionally, though traditional PINNs (vanilla-PINNs) are typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show that for DT-PINNs, using fp64 on the GPU leads to significantly faster training times than fp32 vanilla-PINNs with comparable accuracy. Our results show that fp64 DT-PINNs offer a superior cost-accuracy profile to fp32 vanilla-PINNs.</p>
156+
157+
</td>
158+
</tr>
159+
160+
161+
162+
163+
129164
<tr>
130165
<td style="padding:2.5%;width:25%;vertical-align:middle;min-width:120px">
131166
<img src="/images/kddpaper.png" alt="project image" style="width:auto; height:auto; max-width:100%;" />
@@ -136,7 +171,7 @@ <h3>Beyond modeling: NLP Pipeline for efficient environmental policy analysis</h
136171
Jordi Planas, Daniel Firebanks-Quevedo, Galina Naydenova, <strong>Ramansh Sharma</strong>, Cristina Taylor, Kathleen Buckingham, Rong Fang
137172

138173
<br>
139-
<em>Fragile Earth proceedings - KDD 2021</em>, 2021
174+
<em>Fragile Earth proceedings - KDD</em>, 2021
140175
<br>
141176

142177
<a href="/docs/kddpaper.pdf">paper</a> /
@@ -193,6 +228,10 @@ <h2>Other notes</h2>
193228

194229

195230

231+
232+
233+
234+
196235
</ul>
197236
</td>
198237
</tr>

‎_site/sitemap.xml

+12
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,18 @@
55
<lastmod>2021-08-15T05:29:59+05:30</lastmod>
66
</url>
77
<url>
8+
<loc>http://localhost:4000/</loc>
9+
<lastmod>2022-09-15T07:29:59+05:30</lastmod>
10+
</url>
11+
<url>
12+
<loc>http://localhost:4000/docs/Ramansh_Sharma_Resume.pdf</loc>
13+
<lastmod>2022-09-16T00:02:15+05:30</lastmod>
14+
</url>
15+
<url>
16+
<loc>http://localhost:4000/docs/dtpinn.pdf</loc>
17+
<lastmod>2022-09-16T00:13:21+05:30</lastmod>
18+
</url>
19+
<url>
820
<loc>http://localhost:4000/docs/kddpaper.pdf</loc>
921
<lastmod>2022-04-01T00:00:55+05:30</lastmod>
1022
</url>

‎docs/Ramansh_Sharma_Resume.pdf

53.4 KB
Binary file not shown.

‎docs/dtpinn.pdf

1.21 MB
Binary file not shown.

‎images/dtpinn.png

336 KB
Loading

0 commit comments

Comments
 (0)
Please sign in to comment.