-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
273 lines (222 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
from os.path import join
import math
import wandb
from tqdm.auto import tqdm, trange
import numpy as np
import torch
from torch.utils.data import DataLoader
import datasets
from transformers import AdamW, get_scheduler, GPT2Tokenizer, GPT2LMHeadModel, DataCollatorForTokenClassification
from accelerate import Accelerator
from detoxify import Detoxify
from data import load_rtp_dataset, prep_dataset_for_training, prep_dataset_for_generation, rand_split_dataset, \
get_ngram_overlap
parser = argparse.ArgumentParser(description="Data Feedback on Conditional Language Generation")
parser.add_argument('--wandb-log', action='store_true', help='if set, logs to wandb')
parser.add_argument('--wandb-group', type=str, default='debugging', help='group name for this experiment')
parser.add_argument('--data-dir', default='./data', type=str, help='path to data root')
parser.add_argument('--test-set-size', type=int, default=14442)
parser.add_argument('-n', '--init-train-set-size', type=int, default=20000)
parser.add_argument('-m', '--num-human-labeled-samples', type=int, default=2500)
parser.add_argument('-k', '--num-model-labeled-samples', type=int, default=2500)
parser.add_argument('-a', '--arch', choices=['gpt2', 'gpt2-medium', 'gpt2-large'], default='gpt2')
parser.add_argument("--max-generated-tokens", type=int, default=20, help="Maximum number of new tokens to generate for each sample.")
parser.add_argument("--memorization-ngrams", nargs="+", type=int, default=[5, 10], help="Which ngrams to compute memorization over.")
parser.add_argument("--sampling-type", choices=["beam_search", "nucleus_sampling"], default="nucleus_sampling")
parser.add_argument("--nucleus-top-p", type=float, default=0.9, help="Top_p parameter for nucleus sampling during generation.")
parser.add_argument("--num-beams", type=int, default=10, help="Number of beams for beam search during generation.")
parser.add_argument("--num-train-epochs", default=1, type=int)
parser.add_argument("--tox-model-batch-size", type=int, default=64, help="Batch size for toxicity model.")
parser.add_argument("--train-batch-size", type=int, help='automatically set based on arch if not provided')
parser.add_argument("--gradient-accumulation-steps", type=int, help='automatically set based on arch if not provided')
parser.add_argument("--learning-rate", type=float, help='automatically set based on arch if not provided')
args = parser.parse_args()
# Set training hparams for the model (if not given)
# by default, train_batch_size and gradient_accumulation_steps set so total_batch__size = 16 always
if not args.train_batch_size:
if args.arch == 'gpt2': args.train_batch_size = 16
elif args.arch == 'gpt2-medium': args.train_batch_size = 8
elif args.arch == 'gpt2-large': args.train_batch_size = 4
if not args.gradient_accumulation_steps:
if args.arch == 'gpt2': args.gradient_accumulation_steps = 1
elif args.arch == 'gpt2-medium': args.gradient_accumulation_steps = 2
elif args.arch == 'gpt2-large': args.gradient_accumulation_steps = 4
if not args.learning_rate:
if args.arch == 'gpt2': args.learning_rate = 5e-5
elif args.arch == 'gpt2-medium': args.learning_rate = 1e-5
elif args.arch == 'gpt2-large': args.learning_rate = 1e-5
args.total_batch_size = args.train_batch_size * args.gradient_accumulation_steps
# Set evaluation batch sizes
args.eval_batch_size = args.train_batch_size * 5
if args.sampling_type == 'beam_search':
args.gen_batch_size = args.train_batch_size * 25 // args.num_beams
elif args.sampling_type == 'nucleus_sampling':
args.gen_batch_size = args.train_batch_size * 25
@torch.no_grad()
def evaluate_ppl(model, data_loader, accelerator):
model.eval()
losses = []
for batch in tqdm(data_loader, disable=not accelerator.is_main_process, desc='Evaluating'):
outputs = model(**batch)
loss = outputs.loss
losses.append(accelerator.gather(loss.repeat(data_loader.batch_sampler.batch_size)))
losses = torch.cat(losses)[:len(data_loader.dataset)]
perplexity = math.exp(torch.mean(losses))
return perplexity
@torch.no_grad()
def generate_samples(model, data_loader, accelerator, tokenizer, max_generated_tokens, sampling_type, nucleus_top_p, num_beams):
tokenizer.padding_side = 'left'
model.eval()
sample_ids, samples = [], []
for batch in tqdm(data_loader, disable=not accelerator.is_main_process, desc='Generating'):
if sampling_type == 'nucleus_sampling':
outputs = model.generate(batch['input_ids'], attention_mask=batch['attention_mask'], max_new_tokens=max_generated_tokens,
do_sample=True, top_p=nucleus_top_p, top_k=0)
elif sampling_type == 'beam_search':
outputs = model.generate(batch['input_ids'], attention_mask=batch['attention_mask'], max_new_tokens=max_generated_tokens,
do_sample=False, num_beams=num_beams)
# grab only the continuation generated by the model
generations = outputs[:, batch['input_ids'].size(1):]
generations = accelerator.gather(generations)
# convert generations to text, and also store generated IDs but remove eos tokens
samples.extend(tokenizer.batch_decode(generations, skip_special_tokens=True))
for generation in generations:
sample_ids.append(generation[generation != tokenizer.eos_token_id].tolist())
samples = samples[:len(data_loader.dataset)]
sample_ids = sample_ids[:len(data_loader.dataset)]
tokenizer.padding_side = 'right'
return samples, sample_ids
@torch.no_grad()
def evaluate_samples_tox(samples, accelerator, tox_model, batch_size, stats_prefix):
tox_scores, quote_counts = [], []
for i in trange(0, len(samples), batch_size, disable=not accelerator.is_main_process, desc='Tox-scoring'):
# track quotes
quote_counts.extend([sample.count('”') for sample in samples[i:i+batch_size]])
# score toxicity using pretrained model
pred_tox_scores = tox_model.predict(samples[i:i+batch_size])['toxicity']
pred_tox_scores = accelerator.gather(torch.tensor(pred_tox_scores))
tox_scores.append(pred_tox_scores)
tox_score_results = {}
tox_scores = torch.cat(tox_scores)
tox_score_results[stats_prefix + '/avg_toxicity'] = tox_scores.mean()
tox_score_results[stats_prefix + '/avg_threshold_toxicity'] = (tox_scores > 0.5).float().mean()
tox_score_results[stats_prefix + '/avg_num_quotes'] = np.mean(quote_counts)
tox_score_results[stats_prefix + '/avg_has_a_quote'] = (np.array(quote_counts) > 0).mean()
return tox_score_results
def train(model, train_loader, optimizer, lr_scheduler, num_train_epochs, gradient_accumulation_steps, num_train_steps, accelerator):
model.train()
progress_bar = tqdm(range(num_train_steps), disable=not accelerator.is_main_process, desc='Training')
for _ in range(num_train_epochs):
for step, batch in enumerate(train_loader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
if step % gradient_accumulation_steps == 0 or step == len(train_loader) - 1:
wandb.log({'train_loss': loss.item(), 'lr': lr_scheduler.get_last_lr()[0]})
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
if __name__ == "__main__":
wandb.init(project='data-feedback', group=args.wandb_group, mode='online' if args.wandb_log else 'disabled')
wandb.config.update(vars(args))
accelerator = Accelerator()
# Load GPT2 tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(args.arch)
tokenizer.pad_token = tokenizer.eos_token
# Handles dynamic padding of examples
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
# Get language model
model = GPT2LMHeadModel.from_pretrained(args.arch, pad_token_id=tokenizer.eos_token_id)
# Load and split dataset into train, test, and reserve sets
dataset = load_rtp_dataset(join(args.data_dir, 'realtoxicityprompts-data/prompts.jsonl'), tokenizer)
test_set, reserve_set = rand_split_dataset(dataset, args.test_set_size)
train_set, reserve_set = rand_split_dataset(reserve_set, args.init_train_set_size)
# Set up test set for evaluation and generation
test_set_gen = prep_dataset_for_generation(test_set)
test_set_eval = prep_dataset_for_training(test_set)
test_gen_loader = DataLoader(test_set_gen, shuffle=False, collate_fn=data_collator, batch_size=args.gen_batch_size)
test_eval_loader = DataLoader(test_set_eval, shuffle=False, collate_fn=data_collator, batch_size=args.eval_batch_size)
# Get toxicity model
tox_model = Detoxify('original', device=accelerator.device)
# Move objects to GPU
model, test_gen_loader, test_eval_loader = accelerator.prepare(model, test_gen_loader, test_eval_loader)
# Do initial pretrained model evaluation.
round = -1
print(f'*** ROUND {round} (pretrained model evaluation) ***')
# Evaluate initial (pretrained) model ppl and toxicity
test_ppl = evaluate_ppl(model, test_eval_loader, accelerator)
test_set_model_samples, _ = generate_samples(model, test_gen_loader, accelerator, tokenizer, args.max_generated_tokens,
args.sampling_type, args.nucleus_top_p, args.num_beams)
model_tox_scores = evaluate_samples_tox(test_set_model_samples, accelerator, tox_model, args.tox_model_batch_size, 'generated')
# Evaluate test set toxicity
test_set_tox_scores = evaluate_samples_tox(test_set['continuation'], accelerator, tox_model, args.tox_model_batch_size, 'test_set')
# Log initial statistics
stats = {'round': round, 'test_ppl': test_ppl} | model_tox_scores | test_set_tox_scores
wandb.log(stats)
while True:
round += 1
print(f'*** ROUND {round} ***')
# Create model, optimizer, and dataloader. Move to GPU with accelerator
model = GPT2LMHeadModel.from_pretrained(args.arch, pad_token_id=tokenizer.eos_token_id)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=0)
train_set_prepped = prep_dataset_for_training(train_set)
train_loader = DataLoader(train_set_prepped, shuffle=True, collate_fn=data_collator, batch_size=args.train_batch_size)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
num_train_steps = args.num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(name='linear', optimizer=optimizer, num_training_steps=num_train_steps, num_warmup_steps=0)
# Free models and optimizers from previous loop
accelerator.free_memory()
# Train model
train(model, train_loader, optimizer, lr_scheduler, args.num_train_epochs,
args.gradient_accumulation_steps, num_train_steps, accelerator)
# Free training objects from memory
del lr_scheduler
del optimizer
accelerator.free_memory()
# Evaluate model ppl and toxicity
test_ppl = evaluate_ppl(model, test_eval_loader, accelerator)
test_set_model_samples, test_set_model_sample_ids = generate_samples(model, test_gen_loader, accelerator, tokenizer,
args.max_generated_tokens, args.sampling_type, args.nucleus_top_p, args.num_beams)
model_tox_scores = evaluate_samples_tox(test_set_model_samples, accelerator, tox_model, args.tox_model_batch_size, 'generated')
# Calculate bias for the models tox scores
model_bias_scores = {}
for tox_name, tox_score in model_tox_scores.items():
tox_name = tox_name.split('/')[1]
model_bias_scores[f'bias/{tox_name}'] = tox_score - wandb.run.summary[f'test_set/{tox_name}']
model_tox_scores |= model_bias_scores
# Evaluate model memorization
for n in args.memorization_ngrams:
model_tox_scores |= {f'memorization/{n}_gram_overlap': get_ngram_overlap(train_set['continuation_ids'],
test_set_model_sample_ids, n)}
# Evaluate train set toxicity
train_set_tox_scores = evaluate_samples_tox(train_set['continuation'], accelerator, tox_model, args.tox_model_batch_size, 'train_set')
# Log stats from the round
stats |= model_tox_scores | train_set_tox_scores | {'round': round, 'test_ppl': test_ppl, 'size_train_set': len(train_set),
'size_reserve_set': len(reserve_set)}
wandb.log(stats)
if len(reserve_set) < args.num_human_labeled_samples + args.num_model_labeled_samples:
print(f'Ending retraining - not enough remaining samples in reserve set ({len(reserve_set)} left).')
break
if args.num_human_labeled_samples > 0:
# Take some samples from reserve_set, preprocess them for training, and add them to train set
reserve_set_selected, reserve_set = rand_split_dataset(reserve_set, args.num_human_labeled_samples)
train_set = datasets.concatenate_datasets([train_set, reserve_set_selected])
if args.num_model_labeled_samples > 0:
# Take some samples from reserve_set set and preprocess them for generation (model will complete the prompts)
reserve_set_selected, reserve_set = rand_split_dataset(reserve_set, args.num_model_labeled_samples)
reserve_set_gen = prep_dataset_for_generation(reserve_set_selected)
# Generate completions with model
reserve_set_loader = DataLoader(reserve_set_gen, shuffle=False, collate_fn=data_collator, batch_size=args.gen_batch_size)
reserve_set_loader = accelerator.prepare(reserve_set_loader)
reserve_samples, reserve_sample_ids = generate_samples(model, reserve_set_loader, accelerator, tokenizer, args.max_generated_tokens,
args.sampling_type, args.nucleus_top_p, args.num_beams)
# Use model generations as ground truth & add to train set
reserve_set_remapped = reserve_set_selected.remove_columns(['continuation', 'continuation_ids'])
reserve_set_remapped = reserve_set_remapped.add_column('continuation', reserve_samples)
reserve_set_remapped = reserve_set_remapped.add_column('continuation_ids', reserve_sample_ids)
train_set = datasets.concatenate_datasets([train_set, reserve_set_remapped])