-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLAIPractical26.py
136 lines (89 loc) · 2.77 KB
/
MLAIPractical26.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import pandas as pd #print data and meta data
s = pd.Series([1,3, np.nan,15,7,8])
print(s)
dates = pd.date_range('20180101',periods=6,freq='D')
print(dates)
print(dates[0])
print(np.random.randn(6,4))
df = pd.DataFrame(np.random.randn(6,4), #pandas matrix is dataframe
index= dates,
columns= ['A','B','C' , 'D']
)
print(df)
print("Headings in Dataframe : " , df.columns)
print("Row Headings in Dataframe : " , df.index)
print("Values in Dataframe : " , df.values)
df2 = pd.DataFrame({ 'A' : 1.0,
'B' : pd.Timestamp("20190102121400"),
'C' : pd.Series(1,index=list(range(4)),dtype='float64'),
'D' : np.array( [3] * 4, dtype='int64'),
'E' : pd.Categorical(["test", "train","train", "test"],
categories=["test","train"]),
'F' : 'foo'
}
)
print(df2)
print(df2.dtypes)
print(df.head()) #print top 5 rows
print(df.tail()) #print last 5 rows
print(df.sample(3)) #print random rows
print(df.index)
print(df.columns)
print(df.values)
print(df.describe())
print(df.describe(include="all")) #for non numeric
print(df.T) #transposing
print("original values : \n ", df)
print("Sorted values : \n" , df.sort_values(by='B',ascending=True))
print("original values : \n", df )
#selecting single cloumn, which yields a series, equivalent to df.A
print( df.A )
print()
print( df['A'] )
print(df['2018-01-01':'2018-01-03'])
#selecting via[] which slice of row
print(df[0:3])#print first three rows #ending is excluded in indexing
print( df.loc[dates[0]])
print(df.loc[:,['A','B']])
print(df.loc['20180102':'20180104',['A','B']])
print(df.loc['20180102',['A','B']])
print( df.loc[dates[0],'A']) #getting scalar value
print(df.at[dates[0], 'A']) #getting faster access to a scalar value
print("/n")
print(df.iloc[3])
print(df.iloc[3:5,0:2])
print(df.iloc[[1,2,4] , [0,2]])
print(df.iloc[1:3,:])
print(df.iloc[:,1:3])
print(df.iloc[1,1])
print(df.iat[1,1])
print("\n\n\n")
#Boolean indexing
print(df.A)
print("\n\n")
print(df.A > 0)
print("\n\n")
print(df[df.A > 0])
print("\n\n")
print(df["B"][df.A>0])
print("\n\n")
print(df>0)
print("\n\n")
print(df[df >0])
df2 = df.copy()
df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
print(df2)
print( df2[ df2['E'].isin(['two','four'])] )
print(df.mean())
print("\n\nMean of B : " , df.B.mean())
print("\n\nMean of B : " , df['B'].mean())
print(df[df.B > df.B.mean()])
print(df.mean(axis=1))
print("\n\nAfter deletion \n")
print(df2.drop(df2.index[2:4],axis=0))
print("\n\nAfter deletion \n")
print(df2.drop(df2.columns[1:3],axis=1))
print("\n\n")
print(df2)
df.to_excel('outputData.xlsx', sheet_name='Sheet1')