forked from scverse/squidpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_features.py
229 lines (180 loc) · 10.3 KB
/
test_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import annotations
from collections.abc import Sequence
import numpy as np
import pandas as pd
import pytest
from anndata import AnnData
from pytest_mock import MockerFixture
from squidpy._constants._constants import ImageFeature
from squidpy.im._container import ImageContainer
from squidpy.im._feature import calculate_image_features
class TestFeatureMixin:
def test_container_empty(self):
cont = ImageContainer()
with pytest.raises(ValueError, match=r"The container is empty."):
cont.features_summary("image")
def test_invalid_layer(self, small_cont: ImageContainer):
with pytest.raises(KeyError, match=r"Image layer `foobar` not found in"):
small_cont.features_summary("foobar")
def test_invalid_channels(self, small_cont: ImageContainer):
with pytest.raises(ValueError, match=r"Channel `-1` is not in"):
small_cont.features_summary("image", channels=-1)
@pytest.mark.parametrize("quantiles", [(), (0.5,), (0.1, 0.9)])
def test_summary_quantiles(self, small_cont: ImageContainer, quantiles: tuple[float, ...]):
if not len(quantiles):
with pytest.raises(ValueError, match=r"No quantiles have been selected."):
small_cont.features_summary("image", quantiles=quantiles, feature_name="foo", channels=(0, 1))
else:
features = small_cont.features_summary("image", quantiles=quantiles, feature_name="foo", channels=(0, 1))
haystack = features.keys()
assert isinstance(features, dict)
for c in (0, 1):
for agg in ("mean", "std"):
assert f"foo_ch-{c}_{agg}" in haystack, haystack
for q in quantiles:
assert f"foo_ch-{c}_quantile-{q}" in haystack, haystack
@pytest.mark.parametrize("bins", [5, 10, 20])
def test_histogram_bins(self, small_cont: ImageContainer, bins: int):
features = small_cont.features_histogram("image", bins=bins, feature_name="histogram", channels=(0,))
assert isinstance(features, dict)
haystack = features.keys()
for c in (0,):
for b in range(bins):
assert f"histogram_ch-{c}_bin-{b}" in features, haystack
@pytest.mark.parametrize("props", [(), ("contrast", "ASM")])
def test_textures_props(self, small_cont: ImageContainer, props: Sequence[str]):
if not len(props):
with pytest.raises(ValueError, match=r"No properties have been selected."):
small_cont.features_texture("image", feature_name="foo", props=props)
else:
features = small_cont.features_texture("image", feature_name="foo", props=props)
haystack = features.keys()
for prop in props:
assert any(f"{prop}_dist" in h for h in haystack), haystack
@pytest.mark.parametrize("angles", [(), (0, 0.5 * np.pi)])
def test_textures_angles(self, small_cont: ImageContainer, angles: Sequence[float]):
if not len(angles):
with pytest.raises(ValueError, match=r"No angles have been selected."):
small_cont.features_texture("image", feature_name="foo", angles=angles)
else:
features = small_cont.features_texture("image", feature_name="foo", angles=angles)
haystack = features.keys()
for a in angles:
assert any(f"angle-{a:.2f}" in h for h in haystack), haystack
@pytest.mark.parametrize("distances", [(), (1, 2, 10)])
def test_textures_distances(self, small_cont: ImageContainer, distances: Sequence[int]):
if not len(distances):
with pytest.raises(ValueError, match=r"No distances have been selected."):
small_cont.features_texture("image", feature_name="foo", distances=distances)
else:
features = small_cont.features_texture("image", feature_name="foo", distances=distances)
haystack = features.keys()
for d in distances:
assert any(f"dist-{d}" in h for h in haystack), haystack
def test_segmentation_invalid_props(self, small_cont: ImageContainer):
with pytest.raises(ValueError, match=r"Invalid property `foobar`. Valid properties are"):
small_cont.features_segmentation("image", feature_name="foo", props=["foobar"])
def test_segmentation_label(self, small_cont_seg: ImageContainer):
features = small_cont_seg.features_segmentation("image", feature_name="foo", props=["label"])
assert isinstance(features, dict)
assert "foo_label" in features
assert features["foo_label"] == 254
def test_segmentation_centroid(self, small_cont_seg: ImageContainer):
features = small_cont_seg.features_segmentation(
label_layer="segmented", intensity_layer=None, feature_name="foo", props=["centroid"]
)
assert isinstance(features, dict)
assert "foo_centroid" in features
assert isinstance(features["foo_centroid"], np.ndarray)
assert features["foo_centroid"].ndim == 2
@pytest.mark.parametrize("props", [(), ("extent",), ("area", "solidity", "mean_intensity")])
def test_segmentation_props(self, small_cont_seg: ImageContainer, props: Sequence[str]):
if not len(props):
with pytest.raises(ValueError, match=r"No properties have been selected."):
small_cont_seg.features_segmentation(
label_layer="segmented", intensity_layer="image", feature_name="foo", props=props
)
else:
features = small_cont_seg.features_segmentation(
label_layer="segmented", intensity_layer="image", feature_name="foo", props=props, channels=[0]
)
haystack = features.keys()
int_props = [p for p in props if "intensity" in props]
no_int_props = [p for p in props if "intensity" not in props]
for p in no_int_props:
assert any(f"{p}_mean" in h for h in haystack), haystack
assert any(f"{p}_std" in h for h in haystack), haystack
for p in int_props:
assert any(f"ch-0_{p}_mean" in h for h in haystack), haystack
assert any(f"ch-0_{p}_std" in h for h in haystack), haystack
def test_custom_default_name(self, small_cont: ImageContainer):
custom_features = small_cont.features_custom(np.mean, layer="image", channels=[0])
summary_features = small_cont.features_summary("image", feature_name="summary", channels=[0])
assert len(custom_features) == 1
assert f"{np.mean.__name__}_0" in custom_features
assert custom_features[f"{np.mean.__name__}_0"] == summary_features["summary_ch-0_mean"]
def test_custom_returns_iterable(self, small_cont: ImageContainer):
def dummy(_: np.ndarray) -> tuple[int, int]:
return 0, 1
features = small_cont.features_custom(dummy, layer="image", feature_name="foo")
assert len(features) == 2
assert features["foo_0"] == 0
assert features["foo_1"] == 1
def test_custom_additional_layers(self, small_cont: ImageContainer):
# add additional sayer to small_cont
small_cont.add_img(small_cont["image"][:, :, :, 0], layer="foo")
def feature(arr: np.ndarray, foo: np.ndarray):
assert (arr == small_cont["image"].values).all()
assert (foo == small_cont["foo"].values).all()
return 0
_ = small_cont.features_custom(feature, layer="image", additional_layers=["foo"])
class TestHighLevel:
def test_invalid_layer(self, adata: AnnData, cont: ImageContainer):
with pytest.raises(KeyError, match=r"Image layer `foo` not found"):
calculate_image_features(adata, cont, layer="foo")
def test_invalid_feature(self, adata: AnnData, cont: ImageContainer):
with pytest.raises(ValueError, match=r"Invalid option `foo` for `ImageFeature`"):
calculate_image_features(adata, cont, features="foo")
def test_passing_spot_crops_kwargs(self, adata: AnnData, cont: ImageContainer, mocker: MockerFixture):
spy = mocker.spy(cont, "generate_spot_crops")
calculate_image_features(adata, cont, mask_circle=True)
spy.assert_called_once()
call = spy.call_args_list[0]
assert call[-1]["mask_circle"]
def test_passing_feature_kwargs(self, adata: AnnData, cont: ImageContainer):
def dummy(_: np.ndarray, sentinel: bool = False) -> int:
assert sentinel
return 42
res = calculate_image_features(
adata,
cont,
key_added="foo",
features=ImageFeature.CUSTOM.s,
features_kwargs={ImageFeature.CUSTOM.s: {"func": dummy, "sentinel": True, "channels": [0]}},
copy=True,
)
assert isinstance(res, pd.DataFrame)
np.testing.assert_array_equal(res.index, adata.obs_names)
np.testing.assert_array_equal(res.columns, ["dummy_0"])
np.testing.assert_array_equal(res["dummy_0"].values, 42)
def test_key_added(self, adata: AnnData, cont: ImageContainer):
assert "foo" not in adata.obsm
res = calculate_image_features(adata, cont, key_added="foo", copy=False)
assert res is None
assert "foo" in adata.obsm
assert isinstance(adata.obsm["foo"], pd.DataFrame)
def test_copy(self, adata: AnnData, cont: ImageContainer):
orig_keys = set(adata.obsm.keys())
res = calculate_image_features(adata, cont, key_added="foo", copy=True)
assert isinstance(res, pd.DataFrame)
np.testing.assert_array_equal(res.index, adata.obs_names)
assert set(adata.obsm.keys()) == orig_keys
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_parallelize(self, adata: AnnData, cont: ImageContainer, n_jobs: int):
features = ["texture", "summary", "histogram"]
res = calculate_image_features(adata, cont, library_id=None, features=features, copy=True, n_jobs=n_jobs)
assert isinstance(res, pd.DataFrame)
np.testing.assert_array_equal(res.index, adata.obs_names)
assert [key for key in res.keys() if "texture" in key] != [], "feature name texture not in dict keys"
assert [key for key in res.keys() if "summary" in key] != [], "feature name summary not in dict keys"
assert [key for key in res.keys() if "histogram" in key] != [], "feature name histogram not in dict keys"