-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
49 lines (45 loc) · 1.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from flask import Flask, render_template, request
import jsonify
import requests
import pickle
import numpy as np
import sklearn
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('random_forest_classifier_BalancedData1_model.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
return render_template('valid.html')
standard_to = StandardScaler()
@app.route("/predict", methods=['POST'])
def predict():
if request.method == 'POST':
BQ= int(request.form['BQ'])
ESS=int(request.form['ESS'])
BMI=float(request.form['BMI'])
#Kms_Driven2=np.log(Kms_Driven)
Weight=int(request.form['Weight'])
Height=int(request.form['Height'])
Head=float(request.form['Head'])
Neck=int(request.form['Neck'])
Waist=int(request.form['Waist'])
Buttock=int(request.form['Buttock'])
Age=int(request.form['Age'])
M=int(request.form['M'])
prediction=model.predict([[BQ,ESS,BMI,Weight,Height,Head,Neck,Waist,Buttock,Age,M
]])
prediction=round(prediction[0],4)
if prediction<0:
return render_template('valid.html',prediction_texts="No{}")
elif prediction==0:
return render_template('normal.html',prediction_text= "OBSTRUCTIVE SLEEP APNEA CONDITION : NORMAL")
elif prediction==1:
return render_template('mild.html',prediction_text= "OBSTRUCTIVE SLEEP APNEA CONDITION : MILD ")
elif prediction==2:
return render_template('moderate.html',prediction_text= "OBSTRUCTIVE SLEEP APNEA CONDITION : MODERATE ")
elif prediction ==3:
return render_template('severe.html',prediction_text= "OBSTRUCTIVE SLEEP APNEA CONDITION : SEVERE")
else:
return render_template('valid.html')
if __name__=="__main__":
app.run(debug=True)