|
| 1 | +use crate::consts::{constant, Constant}; |
| 2 | +use crate::utils::{sext, span_lint_and_then}; |
| 3 | +use if_chain::if_chain; |
| 4 | +use rustc::declare_lint_pass; |
| 5 | +use rustc::hir::*; |
| 6 | +use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; |
| 7 | +use rustc::ty::{self}; |
| 8 | +use rustc_session::declare_tool_lint; |
| 9 | +use std::fmt::Display; |
| 10 | + |
| 11 | +declare_clippy_lint! { |
| 12 | + /// **What it does:** Checks for modulo arithemtic. |
| 13 | + /// |
| 14 | + /// **Why is this bad?** The results of modulo (%) operation might differ |
| 15 | + /// depending on the language, when negative numbers are involved. |
| 16 | + /// If you interop with different languages it might be beneficial |
| 17 | + /// to double check all places that use modulo arithmetic. |
| 18 | + /// |
| 19 | + /// For example, in Rust `17 % -3 = 2`, but in Python `17 % -3 = -1`. |
| 20 | + /// |
| 21 | + /// **Known problems:** None. |
| 22 | + /// |
| 23 | + /// **Example:** |
| 24 | + /// ```rust |
| 25 | + /// let x = -17 % 3; |
| 26 | + /// ``` |
| 27 | + pub MODULO_ARITHMETIC, |
| 28 | + restriction, |
| 29 | + "any modulo arithmetic statement" |
| 30 | +} |
| 31 | + |
| 32 | +declare_lint_pass!(ModuloArithmetic => [MODULO_ARITHMETIC]); |
| 33 | + |
| 34 | +struct OperandInfo { |
| 35 | + string_representation: Option<String>, |
| 36 | + is_negative: bool, |
| 37 | + is_integral: bool, |
| 38 | +} |
| 39 | + |
| 40 | +fn analyze_operand(operand: &Expr<'_>, cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> Option<OperandInfo> { |
| 41 | + match constant(cx, cx.tables, operand) { |
| 42 | + Some((Constant::Int(v), _)) => match cx.tables.expr_ty(expr).kind { |
| 43 | + ty::Int(ity) => { |
| 44 | + let value = sext(cx.tcx, v, ity); |
| 45 | + return Some(OperandInfo { |
| 46 | + string_representation: Some(value.to_string()), |
| 47 | + is_negative: value < 0, |
| 48 | + is_integral: true, |
| 49 | + }); |
| 50 | + }, |
| 51 | + ty::Uint(_) => { |
| 52 | + return Some(OperandInfo { |
| 53 | + string_representation: None, |
| 54 | + is_negative: false, |
| 55 | + is_integral: true, |
| 56 | + }); |
| 57 | + }, |
| 58 | + _ => {}, |
| 59 | + }, |
| 60 | + Some((Constant::F32(f), _)) => { |
| 61 | + return Some(floating_point_operand_info(&f)); |
| 62 | + }, |
| 63 | + Some((Constant::F64(f), _)) => { |
| 64 | + return Some(floating_point_operand_info(&f)); |
| 65 | + }, |
| 66 | + _ => {}, |
| 67 | + } |
| 68 | + None |
| 69 | +} |
| 70 | + |
| 71 | +fn floating_point_operand_info<T: Display + PartialOrd + From<f32>>(f: &T) -> OperandInfo { |
| 72 | + OperandInfo { |
| 73 | + string_representation: Some(format!("{:.3}", *f)), |
| 74 | + is_negative: *f < 0.0.into(), |
| 75 | + is_integral: false, |
| 76 | + } |
| 77 | +} |
| 78 | + |
| 79 | +fn might_have_negative_value(t: &ty::TyS<'_>) -> bool { |
| 80 | + t.is_signed() || t.is_floating_point() |
| 81 | +} |
| 82 | + |
| 83 | +fn check_const_operands<'a, 'tcx>( |
| 84 | + cx: &LateContext<'a, 'tcx>, |
| 85 | + expr: &'tcx Expr<'_>, |
| 86 | + lhs_operand: &OperandInfo, |
| 87 | + rhs_operand: &OperandInfo, |
| 88 | +) { |
| 89 | + if lhs_operand.is_negative ^ rhs_operand.is_negative { |
| 90 | + span_lint_and_then( |
| 91 | + cx, |
| 92 | + MODULO_ARITHMETIC, |
| 93 | + expr.span, |
| 94 | + &format!( |
| 95 | + "you are using modulo operator on constants with different signs: `{} % {}`", |
| 96 | + lhs_operand.string_representation.as_ref().unwrap(), |
| 97 | + rhs_operand.string_representation.as_ref().unwrap() |
| 98 | + ), |
| 99 | + |db| { |
| 100 | + db.note("double check for expected result especially when interoperating with different languages"); |
| 101 | + if lhs_operand.is_integral { |
| 102 | + db.note("or consider using `rem_euclid` or similar function"); |
| 103 | + } |
| 104 | + }, |
| 105 | + ); |
| 106 | + } |
| 107 | +} |
| 108 | + |
| 109 | +fn check_non_const_operands<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>, operand: &Expr<'_>) { |
| 110 | + let operand_type = cx.tables.expr_ty(operand); |
| 111 | + if might_have_negative_value(operand_type) { |
| 112 | + span_lint_and_then( |
| 113 | + cx, |
| 114 | + MODULO_ARITHMETIC, |
| 115 | + expr.span, |
| 116 | + "you are using modulo operator on types that might have different signs", |
| 117 | + |db| { |
| 118 | + db.note("double check for expected result especially when interoperating with different languages"); |
| 119 | + if operand_type.is_integral() { |
| 120 | + db.note("or consider using `rem_euclid` or similar function"); |
| 121 | + } |
| 122 | + }, |
| 123 | + ); |
| 124 | + } |
| 125 | +} |
| 126 | + |
| 127 | +impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ModuloArithmetic { |
| 128 | + fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { |
| 129 | + match &expr.kind { |
| 130 | + ExprKind::Binary(op, lhs, rhs) | ExprKind::AssignOp(op, lhs, rhs) => { |
| 131 | + if let BinOpKind::Rem = op.node { |
| 132 | + let lhs_operand = analyze_operand(lhs, cx, expr); |
| 133 | + let rhs_operand = analyze_operand(rhs, cx, expr); |
| 134 | + if_chain! { |
| 135 | + if let Some(lhs_operand) = lhs_operand; |
| 136 | + if let Some(rhs_operand) = rhs_operand; |
| 137 | + then { |
| 138 | + check_const_operands(cx, expr, &lhs_operand, &rhs_operand); |
| 139 | + } |
| 140 | + else { |
| 141 | + check_non_const_operands(cx, expr, lhs); |
| 142 | + } |
| 143 | + } |
| 144 | + }; |
| 145 | + }, |
| 146 | + _ => {}, |
| 147 | + } |
| 148 | + } |
| 149 | +} |
0 commit comments