-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathconst-float-bits-conv.rs
161 lines (145 loc) · 7.44 KB
/
const-float-bits-conv.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//@ compile-flags: -Zmir-opt-level=0
//@ run-pass
#![feature(const_float_classify)]
#![feature(f16, f16_const)]
#![feature(f128, f128_const)]
#![allow(unused_macro_rules)]
// Don't promote
const fn nop<T>(x: T) -> T { x }
macro_rules! const_assert {
($a:expr) => {
{
const _: () = assert!($a);
assert!(nop($a));
}
};
($a:expr, $b:expr) => {
{
const _: () = assert!($a == $b);
assert_eq!(nop($a), nop($b));
}
};
}
fn has_broken_floats() -> bool {
// i586 targets are broken due to <https://github.com/rust-lang/rust/issues/114479>.
std::env::var("TARGET").is_ok_and(|v| v.contains("i586"))
}
#[cfg(target_arch = "x86_64")]
fn f16(){
const_assert!((1f16).to_bits(), 0x3c00);
const_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00);
const_assert!((12.5f16).to_bits(), 0x4a40);
const_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40);
const_assert!((1337f16).to_bits(), 0x6539);
const_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539);
const_assert!((-14.25f16).to_bits(), 0xcb20);
const_assert!(f16::from_bits(0x3c00), 1.0);
const_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0);
const_assert!(f16::from_bits(0x4a40), 12.5);
const_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5);
const_assert!(f16::from_bits(0x5be0), 252.0);
const_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0);
const_assert!(f16::from_bits(0xcb20), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155;
const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA;
const_assert!(f16::from_bits(QUIET_NAN).is_nan());
const_assert!(f16::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn f32() {
const_assert!((1f32).to_bits(), 0x3f800000);
const_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000);
const_assert!((12.5f32).to_bits(), 0x41480000);
const_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000);
const_assert!((1337f32).to_bits(), 0x44a72000);
const_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000);
const_assert!((-14.25f32).to_bits(), 0xc1640000);
const_assert!(f32::from_bits(0x3f800000), 1.0);
const_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0);
const_assert!(f32::from_bits(0x41480000), 12.5);
const_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5);
const_assert!(f32::from_bits(0x44a72000), 1337.0);
const_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
const_assert!(f32::from_bits(0xc1640000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
const_assert!(f32::from_bits(QUIET_NAN).is_nan());
const_assert!(f32::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn f64() {
const_assert!((1f64).to_bits(), 0x3ff0000000000000);
const_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000);
const_assert!((12.5f64).to_bits(), 0x4029000000000000);
const_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000);
const_assert!((1337f64).to_bits(), 0x4094e40000000000);
const_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000);
const_assert!((-14.25f64).to_bits(), 0xc02c800000000000);
const_assert!(f64::from_bits(0x3ff0000000000000), 1.0);
const_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0);
const_assert!(f64::from_bits(0x4029000000000000), 12.5);
const_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5);
const_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
const_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
const_assert!(f64::from_bits(0xc02c800000000000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
const_assert!(f64::from_bits(QUIET_NAN).is_nan());
const_assert!(f64::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
#[cfg(target_arch = "x86_64")]
fn f128() {
const_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
const_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000);
const_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
const_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000);
const_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
const_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000);
const_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
const_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
const_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0);
const_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
const_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5);
const_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0);
const_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA;
const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555;
const_assert!(f128::from_bits(QUIET_NAN).is_nan());
const_assert!(f128::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn main() {
#[cfg(target_arch = "x86_64")]
{
f16();
f128();
}
f32();
f64();
}