You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Compound operators (e.g. 'a += b') have two different possible
evaluation orders. When the left-hand side is a primitive type, the
expression is evaluated right-to-left. However, when the left-hand side
is a non-primitive type, the expression is evaluated left-to-right.
This causes problems when we try to determine if a type is live across a
yield point. Since we need to perform this computation before typecheck
has run, we can't simply check the types of the operands.
This commit calculates the most 'pessimistic' scenario - that is,
erring on the side of treating more types as live, rather than fewer.
This is perfectly safe - in fact, this initial liveness computation is
already overly conservative (e.g. issue #57478). The important thing is
that we compute a superset of the types that are actually live across
yield points. When we generate MIR, we'll determine which types actually
need to stay live across a given yield point, and which ones cam
actually be dropped.
Concretely, we force the computed HIR traversal index for
right-hand-side yield expression to be equal to the maximum index for
the left-hand side. This covers both possible execution orders:
* If the expression is evalauted right-to-left, our 'pessismitic' index
is unecessary, but safe. We visit the expressions in an
ExprKind::AssignOp from right to left, so it actually would have been
safe to do nothing. However, while increasing the index of a yield point
might cause the compiler to reject code that could actually compile, it
will never cause incorrect code to be accepted.
* If the expression is evaluated left-to-right, our 'pessimistic' index
correctly ensures that types in the left-hand-side are seen as occuring
before the yield - which is exactly what we want
0 commit comments