|
| 1 | +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT |
| 2 | +// file at the top-level directory of this distribution and at |
| 3 | +// http://rust-lang.org/COPYRIGHT. |
| 4 | +// |
| 5 | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | +// option. This file may not be copied, modified, or distributed |
| 9 | +// except according to those terms. |
| 10 | + |
| 11 | +use rustc::mir::{BasicBlock, Location, Mir}; |
| 12 | +use rustc_data_structures::indexed_vec::{Idx, IndexVec}; |
| 13 | + |
| 14 | +/// Maps between a MIR Location, which identifies the a particular |
| 15 | +/// statement within a basic block, to a "rich location", which |
| 16 | +/// identifies at a finer granularity. In particular, we distinguish |
| 17 | +/// the *start* of a statement and the *mid-point*. The mid-point is |
| 18 | +/// the point *just* before the statement takes effect; in particular, |
| 19 | +/// for an assignment `A = B`, it is the point where B is about to be |
| 20 | +/// written into A. This mid-point is a kind of hack to work around |
| 21 | +/// our inability to track the position information at sufficient |
| 22 | +/// granularity through outlives relations; however, the rich location |
| 23 | +/// table serves another purpose: it compresses locations from |
| 24 | +/// multiple words into a single u32. |
| 25 | +crate struct LocationTable { |
| 26 | + num_points: usize, |
| 27 | + statements_before_block: IndexVec<BasicBlock, usize>, |
| 28 | +} |
| 29 | + |
| 30 | +newtype_index!(LocationIndex { DEBUG_FORMAT = "LocationIndex({})" }); |
| 31 | + |
| 32 | +#[derive(Copy, Clone, Debug)] |
| 33 | +crate enum RichLocation { |
| 34 | + Start(Location), |
| 35 | + Mid(Location), |
| 36 | +} |
| 37 | + |
| 38 | +impl LocationTable { |
| 39 | + crate fn new(mir: &Mir<'_>) -> Self { |
| 40 | + let mut num_points = 0; |
| 41 | + let statements_before_block = mir.basic_blocks() |
| 42 | + .iter() |
| 43 | + .map(|block_data| { |
| 44 | + let v = num_points; |
| 45 | + num_points += (block_data.statements.len() + 1) * 2; |
| 46 | + v |
| 47 | + }) |
| 48 | + .collect(); |
| 49 | + |
| 50 | + debug!( |
| 51 | + "LocationTable(statements_before_block={:#?})", |
| 52 | + statements_before_block |
| 53 | + ); |
| 54 | + debug!("LocationTable: num_points={:#?}", num_points); |
| 55 | + |
| 56 | + Self { |
| 57 | + num_points, |
| 58 | + statements_before_block, |
| 59 | + } |
| 60 | + } |
| 61 | + |
| 62 | + crate fn all_points(&self) -> impl Iterator<Item = LocationIndex> { |
| 63 | + (0..self.num_points).map(LocationIndex::new) |
| 64 | + } |
| 65 | + |
| 66 | + crate fn start_index(&self, location: Location) -> LocationIndex { |
| 67 | + let Location { |
| 68 | + block, |
| 69 | + statement_index, |
| 70 | + } = location; |
| 71 | + let start_index = self.statements_before_block[block]; |
| 72 | + LocationIndex::new(start_index + statement_index * 2) |
| 73 | + } |
| 74 | + |
| 75 | + crate fn mid_index(&self, location: Location) -> LocationIndex { |
| 76 | + let Location { |
| 77 | + block, |
| 78 | + statement_index, |
| 79 | + } = location; |
| 80 | + let start_index = self.statements_before_block[block]; |
| 81 | + LocationIndex::new(start_index + statement_index * 2 + 1) |
| 82 | + } |
| 83 | + |
| 84 | + crate fn to_location(&self, index: LocationIndex) -> RichLocation { |
| 85 | + let point_index = index.index(); |
| 86 | + |
| 87 | + // Find the basic block. We have a vector with the |
| 88 | + // starting index of the statement in each block. Imagine |
| 89 | + // we have statement #22, and we have a vector like: |
| 90 | + // |
| 91 | + // [0, 10, 20] |
| 92 | + // |
| 93 | + // In that case, this represents point_index 2 of |
| 94 | + // basic block BB2. We know this because BB0 accounts for |
| 95 | + // 0..10, BB1 accounts for 11..20, and BB2 accounts for |
| 96 | + // 20... |
| 97 | + // |
| 98 | + // To compute this, we could do a binary search, but |
| 99 | + // because I am lazy we instead iterate through to find |
| 100 | + // the last point where the "first index" (0, 10, or 20) |
| 101 | + // was less than the statement index (22). In our case, this will |
| 102 | + // be (BB2, 20). |
| 103 | + let (block, &first_index) = self.statements_before_block |
| 104 | + .iter_enumerated() |
| 105 | + .filter(|(_, first_index)| **first_index <= point_index) |
| 106 | + .last() |
| 107 | + .unwrap(); |
| 108 | + |
| 109 | + let statement_index = (point_index - first_index) / 2; |
| 110 | + if index.is_start() { |
| 111 | + RichLocation::Start(Location { block, statement_index }) |
| 112 | + } else { |
| 113 | + RichLocation::Mid(Location { block, statement_index }) |
| 114 | + } |
| 115 | + } |
| 116 | +} |
| 117 | + |
| 118 | +impl LocationIndex { |
| 119 | + fn is_start(&self) -> bool { |
| 120 | + // even indices are start points; odd indices are mid points |
| 121 | + (self.index() % 2) == 0 |
| 122 | + } |
| 123 | +} |
0 commit comments