|
| 1 | +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT |
| 2 | +// file at the top-level directory of this distribution and at |
| 3 | +// http://rust-lang.org/COPYRIGHT. |
| 4 | +// |
| 5 | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | +// option. This file may not be copied, modified, or distributed |
| 9 | +// except according to those terms. |
| 10 | + |
| 11 | +//! Routine to compute the strongly connected components (SCCs) of a |
| 12 | +//! graph, as well as the resulting DAG if each SCC is replaced with a |
| 13 | +//! node in the graph. This uses Tarjan's algorithm that completes in |
| 14 | +//! O(n) time. |
| 15 | +
|
| 16 | +use graph::{DirectedGraph, WithNumNodes, WithSuccessors}; |
| 17 | +use indexed_vec::{Idx, IndexVec}; |
| 18 | +use std::ops::Range; |
| 19 | + |
| 20 | +mod test; |
| 21 | + |
| 22 | +/// Strongly connected components (SCC) of a graph. The type `N` is |
| 23 | +/// the index type for the graph nodes and `S` is the index type for |
| 24 | +/// the SCCs. We can map from each node to the SCC that it |
| 25 | +/// participates in, and we also have the successors of each SCC. |
| 26 | +pub struct Sccs<N: Idx, S: Idx> { |
| 27 | + /// For each node, what is the SCC index of the SCC to which it |
| 28 | + /// belongs. |
| 29 | + scc_indices: IndexVec<N, S>, |
| 30 | + |
| 31 | + /// Data about each SCC. |
| 32 | + scc_data: SccData<S>, |
| 33 | +} |
| 34 | + |
| 35 | +struct SccData<S: Idx> { |
| 36 | + /// For each SCC, the range of `all_successors` where its |
| 37 | + /// successors can be found. |
| 38 | + ranges: IndexVec<S, Range<usize>>, |
| 39 | + |
| 40 | + /// Contains the succcessors for all the Sccs, concatenated. The |
| 41 | + /// range of indices corresponding to a given SCC is found in its |
| 42 | + /// SccData. |
| 43 | + all_successors: Vec<S>, |
| 44 | +} |
| 45 | + |
| 46 | +impl<N: Idx, S: Idx> Sccs<N, S> { |
| 47 | + pub fn new(graph: &(impl DirectedGraph<Node = N> + WithNumNodes + WithSuccessors)) -> Self { |
| 48 | + SccsConstruction::construct(graph) |
| 49 | + } |
| 50 | + |
| 51 | + /// Returns the number of SCCs in the graph. |
| 52 | + pub fn num_sccs(&self) -> usize { |
| 53 | + self.scc_data.len() |
| 54 | + } |
| 55 | + |
| 56 | + /// Returns the SCC to which a node `r` belongs. |
| 57 | + pub fn scc(&self, r: N) -> S { |
| 58 | + self.scc_indices[r] |
| 59 | + } |
| 60 | + |
| 61 | + /// Returns the successor of the given SCC. |
| 62 | + pub fn successors(&self, scc: S) -> &[S] { |
| 63 | + self.scc_data.successors(scc) |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +impl<S: Idx> SccData<S> { |
| 68 | + /// Number of SCCs, |
| 69 | + fn len(&self) -> usize { |
| 70 | + self.ranges.len() |
| 71 | + } |
| 72 | + |
| 73 | + /// Returns the successor of the given SCC. |
| 74 | + fn successors(&self, scc: S) -> &[S] { |
| 75 | + // Annoyingly, `range` does not implement `Copy`, so we have |
| 76 | + // to do `range.start..range.end`: |
| 77 | + let range = &self.ranges[scc]; |
| 78 | + &self.all_successors[range.start..range.end] |
| 79 | + } |
| 80 | + |
| 81 | + /// Creates a new SCC with `successors` as its successors and |
| 82 | + /// returns the resulting index. |
| 83 | + fn create_scc(&mut self, successors: impl IntoIterator<Item = S>) -> S { |
| 84 | + // Store the successors on `scc_successors_vec`, remembering |
| 85 | + // the range of indices. |
| 86 | + let all_successors_start = self.all_successors.len(); |
| 87 | + self.all_successors.extend(successors); |
| 88 | + let all_successors_end = self.all_successors.len(); |
| 89 | + |
| 90 | + debug!( |
| 91 | + "create_scc({:?}) successors={:?}", |
| 92 | + self.ranges.len(), |
| 93 | + &self.all_successors[all_successors_start..all_successors_end], |
| 94 | + ); |
| 95 | + |
| 96 | + self.ranges.push(all_successors_start..all_successors_end) |
| 97 | + } |
| 98 | +} |
| 99 | + |
| 100 | +struct SccsConstruction<'c, G: DirectedGraph + WithNumNodes + WithSuccessors + 'c, S: Idx> { |
| 101 | + graph: &'c G, |
| 102 | + |
| 103 | + /// The state of each node; used during walk to record the stack |
| 104 | + /// and after walk to record what cycle each node ended up being |
| 105 | + /// in. |
| 106 | + node_states: IndexVec<G::Node, NodeState<G::Node, S>>, |
| 107 | + |
| 108 | + /// The stack of nodes that we are visiting as part of the DFS. |
| 109 | + node_stack: Vec<G::Node>, |
| 110 | + |
| 111 | + /// The stack of successors: as we visit a node, we mark our |
| 112 | + /// position in this stack, and when we encounter a successor SCC, |
| 113 | + /// we push it on the stack. When we complete an SCC, we can pop |
| 114 | + /// everything off the stack that was found along the way. |
| 115 | + successors_stack: Vec<S>, |
| 116 | + scc_data: SccData<S>, |
| 117 | +} |
| 118 | + |
| 119 | +#[derive(Copy, Clone, Debug)] |
| 120 | +enum NodeState<N, S> { |
| 121 | + /// This node has not yet been visited as part of the DFS. |
| 122 | + /// |
| 123 | + /// After SCC construction is complete, this state ought to be |
| 124 | + /// impossible. |
| 125 | + NotVisited, |
| 126 | + |
| 127 | + /// This node is currently being walk as part of our DFS. It is on |
| 128 | + /// the stack at the depth `depth`. |
| 129 | + /// |
| 130 | + /// After SCC construction is complete, this state ought to be |
| 131 | + /// impossible. |
| 132 | + BeingVisited { depth: usize }, |
| 133 | + |
| 134 | + /// Indicates that this node is a member of the given cycle. |
| 135 | + InCycle { scc_index: S }, |
| 136 | + |
| 137 | + /// Indicates that this node is a member of whatever cycle |
| 138 | + /// `parent` is a member of. This state is transient: whenever we |
| 139 | + /// see it, we try to overwrite it with the current state of |
| 140 | + /// `parent` (this is the "path compression" step of a union-find |
| 141 | + /// algorithm). |
| 142 | + InCycleWith { parent: N }, |
| 143 | +} |
| 144 | + |
| 145 | +#[derive(Copy, Clone, Debug)] |
| 146 | +enum WalkReturn<S> { |
| 147 | + Cycle { min_depth: usize }, |
| 148 | + Complete { scc_index: S }, |
| 149 | +} |
| 150 | + |
| 151 | +impl<'c, G, S> SccsConstruction<'c, G, S> |
| 152 | +where |
| 153 | + G: DirectedGraph + WithNumNodes + WithSuccessors, |
| 154 | + S: Idx, |
| 155 | +{ |
| 156 | + /// Identifies SCCs in the graph `G` and computes the resulting |
| 157 | + /// DAG. This uses a variant of [Tarjan's |
| 158 | + /// algorithm][wikipedia]. The high-level summary of the algorithm |
| 159 | + /// is that we do a depth-first search. Along the way, we keep a |
| 160 | + /// stack of each node whose successors are being visited. We |
| 161 | + /// track the depth of each node on this stack (there is no depth |
| 162 | + /// if the node is not on the stack). When we find that some node |
| 163 | + /// N with depth D can reach some other node N' with lower depth |
| 164 | + /// D' (i.e., D' < D), we know that N, N', and all nodes in |
| 165 | + /// between them on the stack are part of an SCC. |
| 166 | + /// |
| 167 | + /// For each node, we track the lowest depth of any successor we |
| 168 | + /// have found, along with that |
| 169 | + /// |
| 170 | + /// [wikipedia]: https://bit.ly/2EZIx84 |
| 171 | + fn construct(graph: &'c G) -> Sccs<G::Node, S> { |
| 172 | + let num_nodes = graph.num_nodes(); |
| 173 | + |
| 174 | + let mut this = Self { |
| 175 | + graph, |
| 176 | + node_states: IndexVec::from_elem_n(NodeState::NotVisited, num_nodes), |
| 177 | + node_stack: Vec::with_capacity(num_nodes), |
| 178 | + successors_stack: Vec::new(), |
| 179 | + scc_data: SccData { |
| 180 | + ranges: IndexVec::new(), |
| 181 | + all_successors: Vec::new(), |
| 182 | + }, |
| 183 | + }; |
| 184 | + |
| 185 | + let scc_indices = (0..num_nodes) |
| 186 | + .map(G::Node::new) |
| 187 | + .map(|node| match this.walk_node(0, node) { |
| 188 | + WalkReturn::Complete { scc_index } => scc_index, |
| 189 | + WalkReturn::Cycle { min_depth } => panic!( |
| 190 | + "`walk_node(0, {:?})` returned cycle with depth {:?}", |
| 191 | + node, min_depth |
| 192 | + ), |
| 193 | + }) |
| 194 | + .collect(); |
| 195 | + |
| 196 | + Sccs { |
| 197 | + scc_indices, |
| 198 | + scc_data: this.scc_data, |
| 199 | + } |
| 200 | + } |
| 201 | + |
| 202 | + fn walk_node(&mut self, depth: usize, node: G::Node) -> WalkReturn<S> { |
| 203 | + debug!("walk_node(depth = {:?}, node = {:?})", depth, node); |
| 204 | + match self.find_state(node) { |
| 205 | + NodeState::InCycle { scc_index } => WalkReturn::Complete { scc_index }, |
| 206 | + |
| 207 | + NodeState::BeingVisited { depth: min_depth } => WalkReturn::Cycle { min_depth }, |
| 208 | + |
| 209 | + NodeState::NotVisited => self.walk_unvisited_node(depth, node), |
| 210 | + |
| 211 | + NodeState::InCycleWith { parent } => panic!( |
| 212 | + "`find_state` returned `InCycleWith({:?})`, which ought to be impossible", |
| 213 | + parent |
| 214 | + ), |
| 215 | + } |
| 216 | + } |
| 217 | + |
| 218 | + /// Fetches the state of the node `r`. If `r` is recorded as being |
| 219 | + /// in a cycle with some other node `r2`, then fetches the state |
| 220 | + /// of `r2` (and updates `r` to reflect current result). This is |
| 221 | + /// basically the "find" part of a standard union-find algorithm |
| 222 | + /// (with path compression). |
| 223 | + fn find_state(&mut self, r: G::Node) -> NodeState<G::Node, S> { |
| 224 | + debug!("find_state(r = {:?} in state {:?})", r, self.node_states[r]); |
| 225 | + match self.node_states[r] { |
| 226 | + NodeState::InCycle { scc_index } => NodeState::InCycle { scc_index }, |
| 227 | + NodeState::BeingVisited { depth } => NodeState::BeingVisited { depth }, |
| 228 | + NodeState::NotVisited => NodeState::NotVisited, |
| 229 | + NodeState::InCycleWith { parent } => { |
| 230 | + let parent_state = self.find_state(parent); |
| 231 | + debug!("find_state: parent_state = {:?}", parent_state); |
| 232 | + match parent_state { |
| 233 | + NodeState::InCycle { .. } => { |
| 234 | + self.node_states[r] = parent_state; |
| 235 | + parent_state |
| 236 | + } |
| 237 | + |
| 238 | + NodeState::BeingVisited { depth } => { |
| 239 | + self.node_states[r] = NodeState::InCycleWith { |
| 240 | + parent: self.node_stack[depth], |
| 241 | + }; |
| 242 | + parent_state |
| 243 | + } |
| 244 | + |
| 245 | + NodeState::NotVisited | NodeState::InCycleWith { .. } => { |
| 246 | + panic!("invalid parent state: {:?}", parent_state) |
| 247 | + } |
| 248 | + } |
| 249 | + } |
| 250 | + } |
| 251 | + } |
| 252 | + |
| 253 | + /// Walks a node that has never been visited before. |
| 254 | + fn walk_unvisited_node(&mut self, depth: usize, node: G::Node) -> WalkReturn<S> { |
| 255 | + debug!( |
| 256 | + "walk_unvisited_node(depth = {:?}, node = {:?})", |
| 257 | + depth, node |
| 258 | + ); |
| 259 | + |
| 260 | + debug_assert!(match self.node_states[node] { |
| 261 | + NodeState::NotVisited => true, |
| 262 | + _ => false, |
| 263 | + }); |
| 264 | + |
| 265 | + self.node_states[node] = NodeState::BeingVisited { depth }; |
| 266 | + self.node_stack.push(node); |
| 267 | + |
| 268 | + // Walk each successor of the node, looking to see if any of |
| 269 | + // them can reach a node that is presently on the stack. If |
| 270 | + // so, that means they can also reach us. |
| 271 | + let mut min_depth = depth; |
| 272 | + let mut min_cycle_root = node; |
| 273 | + let successors_len = self.successors_stack.len(); |
| 274 | + for successor_node in self.graph.successors(node) { |
| 275 | + debug!( |
| 276 | + "walk_unvisited_node: node = {:?} successor_ode = {:?}", |
| 277 | + node, successor_node |
| 278 | + ); |
| 279 | + match self.walk_node(depth + 1, successor_node) { |
| 280 | + WalkReturn::Cycle { |
| 281 | + min_depth: successor_min_depth, |
| 282 | + } => { |
| 283 | + assert!(successor_min_depth <= depth); |
| 284 | + if successor_min_depth < min_depth { |
| 285 | + debug!( |
| 286 | + "walk_unvisited_node: node = {:?} successor_min_depth = {:?}", |
| 287 | + node, successor_min_depth |
| 288 | + ); |
| 289 | + min_depth = successor_min_depth; |
| 290 | + min_cycle_root = successor_node; |
| 291 | + } |
| 292 | + } |
| 293 | + |
| 294 | + WalkReturn::Complete { |
| 295 | + scc_index: successor_scc_index, |
| 296 | + } => { |
| 297 | + debug!( |
| 298 | + "walk_unvisited_node: node = {:?} successor_scc_index = {:?}", |
| 299 | + node, successor_scc_index |
| 300 | + ); |
| 301 | + self.successors_stack.push(successor_scc_index); |
| 302 | + } |
| 303 | + } |
| 304 | + } |
| 305 | + |
| 306 | + let r = self.node_stack.pop(); |
| 307 | + debug_assert_eq!(r, Some(node)); |
| 308 | + |
| 309 | + if min_depth == depth { |
| 310 | + let scc_index = self.scc_data |
| 311 | + .create_scc(self.successors_stack.drain(successors_len..)); |
| 312 | + self.node_states[node] = NodeState::InCycle { scc_index }; |
| 313 | + WalkReturn::Complete { scc_index } |
| 314 | + } else { |
| 315 | + // We are not the head of the cycle. Return back to our |
| 316 | + // caller. They will take ownership of the |
| 317 | + // `self.successors` data that we pushed. |
| 318 | + self.node_states[node] = NodeState::InCycleWith { |
| 319 | + parent: min_cycle_root, |
| 320 | + }; |
| 321 | + WalkReturn::Cycle { min_depth } |
| 322 | + } |
| 323 | + } |
| 324 | +} |
0 commit comments