@@ -939,7 +939,8 @@ pub type Ixs = isize;
939939/// <sup><a name="req_contig">3</a></sup>Works only if the array is contiguous.
940940///
941941/// The table above does not include all the constructors; it only shows
942- /// conversions to/from `Vec`s/slices. See below for more constructors.
942+ /// conversions to/from `Vec`s/slices. See
943+ /// [below](#constructor-methods-for-owned-arrays) for more constructors.
943944///
944945/// [ArrayView::reborrow()]: type.ArrayView.html#method.reborrow
945946/// [ArrayViewMut::reborrow()]: type.ArrayViewMut.html#method.reborrow
@@ -952,6 +953,101 @@ pub type Ixs = isize;
952953/// [.view()]: #method.view
953954/// [.view_mut()]: #method.view_mut
954955///
956+ /// ### Conversions from Nested `Vec`s/`Array`s
957+ ///
958+ /// It's generally a good idea to avoid nested `Vec`/`Array` types, such as
959+ /// `Vec<Vec<A>>` or `Vec<Array2<A>>` because:
960+ ///
961+ /// * they require extra heap allocations compared to a single `Array`,
962+ ///
963+ /// * they can scatter data all over memory (because of multiple allocations),
964+ ///
965+ /// * they cause unnecessary indirection (traversing multiple pointers to reach
966+ /// the data),
967+ ///
968+ /// * they don't enforce consistent shape within the nested
969+ /// `Vec`s/`ArrayBase`s, and
970+ ///
971+ /// * they are generally more difficult to work with.
972+ ///
973+ /// The most common case where users might consider using nested
974+ /// `Vec`s/`Array`s is when creating an array by appending rows/subviews in a
975+ /// loop, where the rows/subviews are computed within the loop. However, there
976+ /// are better ways than using nested `Vec`s/`Array`s.
977+ ///
978+ /// If you know ahead-of-time the shape of the final array, the cleanest
979+ /// solution is to allocate the final array before the loop, and then assign
980+ /// the data to it within the loop, like this:
981+ ///
982+ /// ```rust
983+ /// use ndarray::{array, Array2, Axis};
984+ ///
985+ /// let mut arr = Array2::zeros((2, 3));
986+ /// for (i, mut row) in arr.axis_iter_mut(Axis(0)).enumerate() {
987+ /// // Perform calculations and assign to `row`; this is a trivial example:
988+ /// row.fill(i);
989+ /// }
990+ /// assert_eq!(arr, array![[0, 0, 0], [1, 1, 1]]);
991+ /// ```
992+ ///
993+ /// If you don't know ahead-of-time the shape of the final array, then the
994+ /// cleanest solution is generally to append the data to a flat `Vec`, and then
995+ /// convert it to an `Array` at the end with
996+ /// [`::from_shape_vec()`](#method.from_shape_vec). You just have to be careful
997+ /// that the layout of the data (the order of the elements in the flat `Vec`)
998+ /// is correct.
999+ ///
1000+ /// ```rust
1001+ /// use ndarray::{array, Array2};
1002+ ///
1003+ /// # fn main() -> Result<(), Box<std::error::Error>> {
1004+ /// let ncols = 3;
1005+ /// let mut data = Vec::new();
1006+ /// let mut nrows = 0;
1007+ /// for i in 0..2 {
1008+ /// // Compute `row` and append it to `data`; this is a trivial example:
1009+ /// let row = vec![i; ncols];
1010+ /// data.extend_from_slice(&row);
1011+ /// nrows += 1;
1012+ /// }
1013+ /// let arr = Array2::from_shape_vec((nrows, ncols), data)?;
1014+ /// assert_eq!(arr, array![[0, 0, 0], [1, 1, 1]]);
1015+ /// # Ok(())
1016+ /// # }
1017+ /// ```
1018+ ///
1019+ /// If neither of these options works for you, and you really need to convert
1020+ /// nested `Vec`/`Array` instances to an `Array`, the cleanest solution is
1021+ /// generally to use
1022+ /// [`Iterator::flatten()`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.flatten)
1023+ /// to get a flat `Vec`, and then convert the `Vec` to an `Array` with
1024+ /// [`::from_shape_vec()`](#method.from_shape_vec), like this:
1025+ ///
1026+ /// ```rust
1027+ /// use ndarray::{array, Array2, Array3};
1028+ ///
1029+ /// # fn main() -> Result<(), Box<std::error::Error>> {
1030+ /// let nested: Vec<Array2<i32>> = vec![
1031+ /// array![[1, 2, 3], [4, 5, 6]],
1032+ /// array![[7, 8, 9], [10, 11, 12]],
1033+ /// ];
1034+ /// let inner_shape = nested[0].dim();
1035+ /// let shape = (nested.len(), inner_shape.0, inner_shape.1);
1036+ /// let flat: Vec<i32> = nested.iter().flatten().cloned().collect();
1037+ /// let arr = Array3::from_shape_vec(shape, flat)?;
1038+ /// assert_eq!(arr, array![
1039+ /// [[1, 2, 3], [4, 5, 6]],
1040+ /// [[7, 8, 9], [10, 11, 12]],
1041+ /// ]);
1042+ /// # Ok(())
1043+ /// # }
1044+ /// ```
1045+ ///
1046+ /// Note that this implementation assumes that the nested `Vec`s are all the
1047+ /// same shape and that the `Vec` is non-empty. Depending on your application,
1048+ /// it may be a good idea to add checks for these assumptions and possibly
1049+ /// choose a different way to handle the empty case.
1050+ ///
9551051// # For implementors
9561052//
9571053// All methods must uphold the following constraints:
0 commit comments