-
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathresource.rs
869 lines (783 loc) · 41 KB
/
resource.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
use core::mem;
use crate::{
value::{AmlType, AmlValue},
AmlError,
};
use alloc::vec::Vec;
use bit_field::BitField;
use byteorder::{ByteOrder, LittleEndian};
#[derive(Debug, PartialEq, Eq)]
pub enum Resource {
Irq(IrqDescriptor),
AddressSpace(AddressSpaceDescriptor),
MemoryRange(MemoryRangeDescriptor),
IOPort(IOPortDescriptor),
Dma(DMADescriptor),
}
/// Parse a `ResourceDescriptor` into a list of resources. Returns `AmlError::IncompatibleValueConversion` if the passed value is not a
/// `Buffer`.
pub fn resource_descriptor_list(descriptor: &AmlValue) -> Result<Vec<Resource>, AmlError> {
if let AmlValue::Buffer(bytes) = descriptor {
let mut descriptors = Vec::new();
let buffer_data = bytes.lock();
let mut bytes = buffer_data.as_slice();
while !bytes.is_empty() {
let (descriptor, remaining_bytes) = resource_descriptor(bytes)?;
if let Some(descriptor) = descriptor {
descriptors.push(descriptor);
bytes = remaining_bytes;
} else {
break;
}
}
Ok(descriptors)
} else {
Err(AmlError::IncompatibleValueConversion { current: descriptor.type_of(), target: AmlType::Buffer })
}
}
/// Parse a `ResourceDescriptor`. Returns `AmlError::IncompatibleValueConversion` if the passed value is not a
/// `Buffer`.
fn resource_descriptor(bytes: &[u8]) -> Result<(Option<Resource>, &[u8]), AmlError> {
/*
* If bit 7 of Byte 0 is set, it's a large descriptor. If not, it's a small descriptor.
*/
if bytes[0].get_bit(7) {
/*
* We're parsing a large item. The descriptor type is encoded in Bits 0-6 of Byte 0. Valid types:
* 0x00: Reserved
* 0x01: 24-bit Memory Range Descriptor
* 0x02: Generic Register Descriptor
* 0x03: Reserved
* 0x04: Vendor-defined Descriptor
* 0x05: 32-bit Memory Range Descriptor
* 0x06: 32-bit Fixed Memory Range Descriptor
* 0x07: Address Space Resource Descriptor
* 0x08: Word Address Space Descriptor
* 0x09: Extended Interrupt Descriptor
* 0x0a: QWord Address Space Descriptor
* 0x0b: Extended Address Space Descriptor
* 0x0c: GPIO Connection Descriptor
* 0x0d: Pin Function Descriptor
* 0x0e: GenericSerialBus Connection Descriptor
* 0x0f: Pin Configuration Descriptor
* 0x10: Pin Group Descriptor
* 0x11: Pin Group Function Descriptor
* 0x12: Pin Group Configuration Descriptor
* 0x13-0x7f: Reserved
*
* Byte 1 contains bits 0-7 of the length, and Byte 2 contains bits 8-15 of the length. Subsequent
* bytes contain the actual data items.
*/
let descriptor_type = bytes[0].get_bits(0..7);
let length = LittleEndian::read_u16(&bytes[1..=2]) as usize;
let (descriptor_bytes, remaining_bytes) = bytes.split_at(length + 3);
let descriptor = match descriptor_type {
0x01 => unimplemented!("24-bit Memory Range Descriptor"),
0x02 => unimplemented!("Generic Register Descriptor"),
0x03 => unimplemented!("0x03 Reserved"),
0x04 => unimplemented!("Vendor-defined Descriptor"),
0x05 => unimplemented!("32-bit Memory Range Descriptor"),
0x06 => fixed_memory_descriptor(descriptor_bytes),
0x07 => address_space_descriptor::<u32>(descriptor_bytes),
0x08 => address_space_descriptor::<u16>(descriptor_bytes),
0x09 => extended_interrupt_descriptor(descriptor_bytes),
0x0a => address_space_descriptor::<u64>(descriptor_bytes),
0x0b => unimplemented!("Extended Address Space Descriptor"),
0x0c => unimplemented!("GPIO Connection Descriptor"),
0x0d => unimplemented!("Pin Function Descriptor"),
0x0e => unimplemented!("GenericSerialBus Connection Descriptor"),
0x0f => unimplemented!("Pin Configuration Descriptor"),
0x10 => unimplemented!("Pin Group Descriptor"),
0x11 => unimplemented!("Pin Group Function Descriptor"),
0x12 => unimplemented!("Pin Group Configuration Descriptor"),
0x00 | 0x13..=0x7f => Err(AmlError::ReservedResourceType),
0x80..=0xff => unreachable!(),
}?;
Ok((Some(descriptor), remaining_bytes))
} else {
/*
* We're parsing a small descriptor. Byte 0 has the format:
* | Bits | Field |
* |-------------|-------------------|
* | 0-2 | Length - n bytes |
* | 3-6 | Small item type |
* | 7 | 0 = small item |
*
* The valid types are:
* 0x00-0x03: Reserved
* 0x04: IRQ Format Descriptor
* 0x05: DMA Format Descriptor
* 0x06: Start Dependent Functions Descriptor
* 0x07: End Dependent Functions Descriptor
* 0x08: IO Port Descriptor
* 0x09: Fixed Location IO Port Descriptor
* 0x0A: Fixed DMA Descriptor
* 0x0B-0x0D: Reserved
* 0x0E: Vendor Defined Descriptor
* 0x0F: End Tag Descriptor
*/
let descriptor_type = bytes[0].get_bits(3..=6);
let length: usize = bytes[0].get_bits(0..=2) as usize;
let (descriptor_bytes, remaining_bytes) = bytes.split_at(length + 1);
let descriptor = match descriptor_type {
0x00..=0x03 => Err(AmlError::ReservedResourceType),
0x04 => irq_format_descriptor(descriptor_bytes),
0x05 => dma_format_descriptor(descriptor_bytes),
0x06 => unimplemented!("Start Dependent Functions Descriptor"),
0x07 => unimplemented!("End Dependent Functions Descriptor"),
0x08 => io_port_descriptor(descriptor_bytes),
0x09 => unimplemented!("Fixed Location IO Port Descriptor"),
0x0A => unimplemented!("Fixed DMA Descriptor"),
0x0B..=0x0D => Err(AmlError::ReservedResourceType),
0x0E => unimplemented!("Vendor Defined Descriptor"),
0x0F => return Ok((None, &[])),
0x10..=0xFF => unreachable!(),
}?;
Ok((Some(descriptor), remaining_bytes))
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum InterruptTrigger {
Edge,
Level,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum InterruptPolarity {
ActiveHigh,
ActiveLow,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum AddressSpaceResourceType {
MemoryRange,
IORange,
BusNumberRange,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum AddressSpaceDecodeType {
Additive,
Subtractive,
}
#[derive(Debug, PartialEq, Eq)]
pub struct AddressSpaceDescriptor {
pub resource_type: AddressSpaceResourceType,
pub is_maximum_address_fixed: bool,
pub is_minimum_address_fixed: bool,
pub decode_type: AddressSpaceDecodeType,
pub granularity: u64,
pub address_range: (u64, u64),
pub translation_offset: u64,
pub length: u64,
}
#[derive(Debug, PartialEq, Eq)]
pub enum MemoryRangeDescriptor {
FixedLocation { is_writable: bool, base_address: u32, range_length: u32 },
}
fn fixed_memory_descriptor(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* -- 32-bit Fixed Memory Descriptor ---
* Offset Field Name Definition
* Byte 0 32-bit Fixed Memory Range Descriptor Value = 0x86 (10000110B) – Type = 1, Large item name = 0x06
* Byte 1 Length, bits [7:0] Value = 0x09 (9)
* Byte 2 Length, bits [15:8] Value = 0x00
* Byte 3 Information This field provides extra information about this memory.
* Bit [7:1] Ignored
* Bit [0] Write status, _RW
* 1 writeable (read/write)
* 0 non-writeable (read-only)
* Byte 4 Range base address, _BAS bits [7:0] Address bits [7:0] of the base memory address for which the card may be configured.
* Byte 5 Range base address, _BAS bits [15:8] Address bits [15:8] of the base memory address for which the card may be configured.
* Byte 6 Range base address, _BAS bits [23:16] Address bits [23:16] of the base memory address for which the card may be configured.
* Byte 7 Range base address, _BAS bits [31:24] Address bits [31:24] of the base memory address for which the card may be configured.
* Byte 8 Range length, _LEN bits [7:0] This field contains bits [7:0] of the memory range length. The range length provides the length of the memory range in 1-byte blocks.
* Byte 9 Range length, _LEN bits [15:8] This field contains bits [15:8] of the memory range length. The range length provides the length of the memory range in 1-byte blocks.
* Byte 10 Range length, _LEN bits [23:16] This field contains bits [23:16] of the memory range length. The range length provides the length of the memory range in 1-byte blocks.
* Byte 11 Range length, _LEN bits [31:24] This field contains bits [31:24] of the memory range length. The range length provides the length of the memory range in 1-byte blocks.
*/
if bytes.len() < 12 {
return Err(AmlError::ResourceDescriptorTooShort);
}
if bytes.len() > 12 {
return Err(AmlError::ResourceDescriptorTooLong);
}
let information = bytes[3];
let is_writable = information.get_bit(0);
let base_address = LittleEndian::read_u32(&bytes[4..=7]);
let range_length = LittleEndian::read_u32(&bytes[8..=11]);
Ok(Resource::MemoryRange(MemoryRangeDescriptor::FixedLocation { is_writable, base_address, range_length }))
}
fn address_space_descriptor<T>(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* WORD Address Space Descriptor Definition
* Note: The definitions for DWORD and QWORD are the same other than the width of the address fields.
*
* Offset Field Name Definition
* Byte 0 WORD Address Space Descriptor Value = 0x88 (10001000B) – Type = 1, Large item name = 0x08
* Byte 1 Length, bits [7:0] Variable length, minimum value = 0x0D (13)
* Byte 2 Length, bits [15:8] Variable length, minimum value = 0x00
* Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined values are:
* 0 Memory range
* 1 I/O range
* 2 Bus number range
* 3–191 Reserved
* 192-255 Hardware Vendor Defined
* Byte 4 General Flags Flags that are common to all resource types:
* Bits [7:4] Reserved (must be 0)
* Bit [3] Max Address Fixed, _MAF:
* 1 The specified maximum address is fixed
* 0 The specified maximum address is not fixed
* and can be changed
* Bit [2] Min Address Fixed,_MIF:
* 1 The specified minimum address is fixed
* 0 The specified minimum address is not fixed
* and can be changed
* Bit [1] Decode Type, _DEC:
* 1 This bridge subtractively decodes this address (top level bridges only)
* 0 This bridge positively decodes this address
* Bit [0] Ignored
* Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the flags in this field depends on the value of the Resource Type field (see above).
* Byte 6 Address space granularity, _GRA bits[7:0] A set bit in this mask means that this bit is decoded. All bits less significant than the most significant set bit must be set. (In other words, the value of the full Address Space Granularity field (all 16 bits) must be a number (2n-1).
* Byte 7 Address space granularity, _GRA bits[15:8]
* Byte 8 Address range minimum, _MIN, bits [7:0] For bridges that translate addresses, this is the address space on the secondary side of the bridge.
* Byte 9 Address range minimum, _MIN, bits [15:8]
* Byte 10 Address range maximum, _MAX, bits [7:0] For bridges that translate addresses, this is the address space on the secondary side of the bridge.
* Byte 11 Address range maximum, _MAX, bits [15:8]
* Byte 12 Address Translation offset, _TRA, bits [7:0] For bridges that translate addresses across the bridge, this is the offset that must be added to the address on the secondary side to obtain the address on the primary side. Non-bridge devices must list 0 for all Address Translation offset bits.
* Byte 13 Address Translation offset, _TRA, bits [15:8]
* Byte 14 Address Length, _LEN, bits [7:0]
* Byte 15 Address Length, _LEN, bits [15:8]
* Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is present. This field gives an index to the specific resource descriptor that this device consumes from in the current resource template for the device object pointed to in Resource Source.
* String Resource Source (Optional) If present, the device that uses this descriptor consumes its resources from the resources produced by the named device object. If not present, the device consumes its resources out of a global pool. If not present, the device consumes this resource from its hierarchical parent.
*/
let size = mem::size_of::<T>();
if bytes.len() < 6 + size * 5 {
return Err(AmlError::ResourceDescriptorTooShort);
}
let resource_type = match bytes[3] {
0 => AddressSpaceResourceType::MemoryRange,
1 => AddressSpaceResourceType::IORange,
2 => AddressSpaceResourceType::BusNumberRange,
3..=191 => return Err(AmlError::ReservedResourceType),
192..=255 => unimplemented!(),
};
let general_flags = bytes[4];
let is_maximum_address_fixed = general_flags.get_bit(3);
let is_minimum_address_fixed = general_flags.get_bit(2);
let decode_type = if general_flags.get_bit(1) {
AddressSpaceDecodeType::Subtractive
} else {
AddressSpaceDecodeType::Additive
};
let mut address_fields = bytes[6..].chunks_exact(size);
// it's safe to unwrap because we check the length at the top
let granularity = LittleEndian::read_uint(address_fields.next().unwrap(), size);
let address_range_min = LittleEndian::read_uint(address_fields.next().unwrap(), size);
let address_range_max = LittleEndian::read_uint(address_fields.next().unwrap(), size);
let translation_offset = LittleEndian::read_uint(address_fields.next().unwrap(), size);
let length = LittleEndian::read_uint(address_fields.next().unwrap(), size);
Ok(Resource::AddressSpace(AddressSpaceDescriptor {
resource_type,
is_maximum_address_fixed,
is_minimum_address_fixed,
decode_type,
granularity,
address_range: (address_range_min, address_range_max),
translation_offset,
length,
}))
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Irq {
Single(u32),
Multiple(Vec<u32>)
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct IrqDescriptor {
pub is_consumer: bool,
pub trigger: InterruptTrigger,
pub polarity: InterruptPolarity,
pub is_shared: bool,
pub is_wake_capable: bool,
pub irq: Irq,
}
fn irq_format_descriptor(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* IRQ Descriptor Definition
*
* Offset Field Name
* Byte 0 Value = 0x22 or 0x23 (0010001nB)– Type = 0, Small item name = 0x4, Length = 2 or 3
* Byte 1 IRQ mask bits[7:0], _INT
* Bit [0] represents IRQ0, bit[1] is IRQ1, and so on.
* Byte 2 IRQ mask bits[15:8], _INT
* Bit [0] represents IRQ8, bit[1] is IRQ9, and so on.
* Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of interrupt.
* (Optional—if not included then assume edge sensitive, high true interrupts.)
* These bits can be used both for reporting and setting IRQ resources.
* Note: This descriptor is meant for describing interrupts that are connected to PIC-compatible interrupt controllers, which can only be programmed for Active-High-Edge-Triggered or Active-Low-Level-Triggered interrupts. Any other combination is invalid. The Extended Interrupt Descriptor can be used to describe other combinations.
* Bit [7:6] Reserved (must be 0)
* Bit [5] Wake Capability, _WKC
* 0x0 = Not Wake Capable: This interrupt is not capable of waking the system.
* 0x1 = Wake Capable: This interrupt is capable of waking the system from a
* low-power idle state or a system sleep state.
* Bit [4] Interrupt Sharing, _SHR
* 0x0 = Exclusive: This interrupt is not shared with other devices.
* 0x1 = Shared: This interrupt is shared with other devices.
* Bit [3] Interrupt Polarity, _LL
* 0 Active-High – This interrupt is sampled when the signal is high, or true
* 1 Active-Low – This interrupt is sampled when the signal is low, or false.
* Bit [2:1] Ignored
* Bit [0] Interrupt Mode, _HE
* 0 Level-Triggered – Interrupt is triggered in response to signal in a low state.
* 1 Edge-Triggered – Interrupt is triggered in response to a change in signal state from low to high.
*/
match bytes.len() {
0..=2 => Err(AmlError::ResourceDescriptorTooShort),
3 => {
// no IRQ information ("length 2" in spec)
let irq = LittleEndian::read_u16(&bytes[1..=2]);
Ok(Resource::Irq(IrqDescriptor {
irq: Irq::Single(irq as u32),
is_wake_capable: false,
is_shared: false,
polarity: InterruptPolarity::ActiveHigh,
trigger: InterruptTrigger::Edge,
is_consumer: false, // assumed to be producer
}))
}
4 => {
// with IRQ information ("length 3" in spec)
let irq = LittleEndian::read_u16(&bytes[1..=2]);
let information = bytes[3];
let is_wake_capable = information.get_bit(5);
let is_shared = information.get_bit(4);
let polarity = match information.get_bit(3) {
false => InterruptPolarity::ActiveHigh,
true => InterruptPolarity::ActiveLow,
};
let trigger = match information.get_bit(0) {
false => InterruptTrigger::Level,
true => InterruptTrigger::Edge,
};
Ok(Resource::Irq(IrqDescriptor {
irq: Irq::Single(irq as u32),
is_wake_capable,
is_shared,
polarity,
trigger,
is_consumer: false, // assumed to be producer
}))
}
_ => Err(AmlError::ResourceDescriptorTooLong),
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum DMASupportedSpeed {
CompatibilityMode,
TypeA, // as described by the EISA
TypeB,
TypeF,
}
#[derive(Debug, PartialEq, Eq)]
pub enum DMATransferTypePreference {
_8BitOnly,
_8And16Bit,
_16Bit,
}
#[derive(Debug, PartialEq, Eq)]
pub struct DMADescriptor {
pub channel_mask: u8,
pub supported_speeds: DMASupportedSpeed,
pub is_bus_master: bool,
pub transfer_type_preference: DMATransferTypePreference,
}
pub fn dma_format_descriptor(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* DMA Descriptor Definition
* Offset Field Name
* Byte 0 Value = 0x2A (00101010B) – Type = 0, Small item name = 0x5, Length = 2
* Byte 1 DMA channel mask bits [7:0] (channels 0 – 7), _DMA
* Bit [0] is channel 0, etc.
* Byte 2 Bit [7] Reserved (must be 0)
* Bits [6:5] DMA channel speed supported, _TYP
* 00 Indicates compatibility mode
* 01 Indicates Type A DMA as described in the EISA
* 10 Indicates Type B DMA
* 11 Indicates Type F
* Bits [4:3] Ignored
* Bit [2] Logical device bus master status, _BM
* 0 Logical device is not a bus master
* 1 Logical device is a bus master
* Bits [1:0] DMA transfer type preference, _SIZ
* 00 8-bit only
* 01 8- and 16-bit
* 10 16-bit only
* 11 Reserved
*/
if bytes.len() < 3 {
return Err(AmlError::ResourceDescriptorTooShort);
}
if bytes.len() > 3 {
return Err(AmlError::ResourceDescriptorTooLong);
}
let channel_mask = bytes[1];
let options = bytes[2];
let supported_speeds = match options.get_bits(5..=6) {
0 => DMASupportedSpeed::CompatibilityMode,
1 => DMASupportedSpeed::TypeA,
2 => DMASupportedSpeed::TypeB,
3 => DMASupportedSpeed::TypeF,
_ => unreachable!(),
};
let is_bus_master = options.get_bit(2);
let transfer_type_preference = match options.get_bits(0..=1) {
0 => DMATransferTypePreference::_8BitOnly,
1 => DMATransferTypePreference::_8And16Bit,
2 => DMATransferTypePreference::_16Bit,
3 => unimplemented!("Reserved DMA transfer type preference"),
_ => unreachable!(),
};
Ok(Resource::Dma(DMADescriptor { channel_mask, supported_speeds, is_bus_master, transfer_type_preference }))
}
#[derive(Debug, PartialEq, Eq)]
pub struct IOPortDescriptor {
pub decodes_full_address: bool,
pub memory_range: (u16, u16),
pub base_alignment: u8,
pub range_length: u8,
}
fn io_port_descriptor(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* I/O Port Descriptor Definition
* Offset Field Name Definition
* Byte 0 I/O Port Descriptor Value = 0x47 (01000111B) –
* Type = 0, Small item name = 0x8, Length = 7
* Byte 1 Information Bits [7:1] Reserved and must be 0
* Bit [0] (_DEC)
* 1 The logical device decodes 16-bit addresses
* 0 The logical device only decodes address bits[9:0]
* Byte 2 Range minimum base address, _MIN bits[7:0] Address bits [7:0] of the minimum base I/O address that the card may be configured for.
* Byte 3 Range minimum base address, _MIN bits[15:8] Address bits [15:8] of the minimum base I/O address that the card may be configured for.
* Byte 4 Range maximum base address, _MAX bits[7:0] Address bits [7:0] of the maximum base I/O address that the card may be configured for.
* Byte 5 Range maximum base address, _MAX bits[15:8] Address bits [15:8] of the maximum base I/O address that the card may be configured for.
* Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1-byte blocks.
* Byte 7 Range length, _LEN The number of contiguous I/O ports requested.
*/
if bytes.len() < 8 {
return Err(AmlError::ResourceDescriptorTooShort);
}
if bytes.len() > 8 {
return Err(AmlError::ResourceDescriptorTooLong);
}
let information = bytes[1];
let decodes_full_address = information.get_bit(0);
let memory_range_min = LittleEndian::read_u16(&bytes[2..=3]);
let memory_range_max = LittleEndian::read_u16(&bytes[4..=5]);
let memory_range = (memory_range_min, memory_range_max);
let base_alignment = bytes[6];
let range_length = bytes[7];
Ok(Resource::IOPort(IOPortDescriptor { decodes_full_address, memory_range, base_alignment, range_length }))
}
fn extended_interrupt_descriptor(bytes: &[u8]) -> Result<Resource, AmlError> {
/*
* --- Extended Interrupt Descriptor ---
* Byte 3 contains the Interrupt Vector Flags:
* Bit 0: 1 if device consumes the resource, 0 if it produces it
* Bit 1: 1 if edge-triggered, 0 if level-triggered
* Bit 2: 1 = active-high, 0 = active-low
* Bit 3: 1 if interrupt is shared with other devices
* Bit 4: 1 if this interrupt is capable of waking the system, 0 if it is not
* Byte 4 contains the number of interrupt numbers that follow. When this descriptor is
* returned from `_CRS` or send to `_SRS`, this field must be 1.
*
* From Byte 5 onwards, there are `n` interrupt numbers, each of which is encoded as a
* 4-byte little-endian number.
*
* NOTE: We only support the case where there is a single interrupt number.
*/
if bytes.len() < 9 {
return Err(AmlError::ResourceDescriptorTooShort);
}
let number_of_interrupts = bytes[4] as usize;
let irq = if number_of_interrupts == 1 {
let irq = LittleEndian::read_u32( &bytes[5..9]);
Irq::Single(irq)
} else {
let mut irqs = Vec::with_capacity(number_of_interrupts);
for i in 0..number_of_interrupts {
let start = 5 + i * size_of::<u32>();
let end = start + 4;
let irq = LittleEndian::read_u32(&bytes[start..end]);
irqs.push(irq);
}
Irq::Multiple(irqs)
};
Ok(Resource::Irq(IrqDescriptor {
is_consumer: bytes[3].get_bit(0),
trigger: if bytes[3].get_bit(1) { InterruptTrigger::Edge } else { InterruptTrigger::Level },
polarity: if bytes[3].get_bit(2) { InterruptPolarity::ActiveLow } else { InterruptPolarity::ActiveHigh },
is_shared: bytes[3].get_bit(3),
is_wake_capable: bytes[3].get_bit(4),
irq,
}))
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::Arc;
#[test]
fn test_parses_keyboard_crs() {
let bytes: Vec<u8> = [
// Generated from `iasl -l pc-bios_acpi-dsdt.asl`
//
// 315: IO (Decode16,
// 316: 0x0060, // Range Minimum
// 317: 0x0060, // Range Maximum
// 318: 0x01, // Alignment
// 319: 0x01, // Length
// 320: )
// 0000040A: 47 01 60 00 60 00 01 01 "G.`.`..."
0x47, 0x01, 0x60, 0x00, 0x60, 0x00, 0x01, 0x01,
// 321: IO (Decode16,
// 322: 0x0064, // Range Minimum
// 323: 0x0064, // Range Maximum
// 324: 0x01, // Alignment
// 325: 0x01, // Length
// 326: )
// 00000412: 47 01 64 00 64 00 01 01 "G.d.d..."
0x47, 0x01, 0x64, 0x00, 0x64, 0x00, 0x01, 0x01,
// 327: IRQNoFlags ()
// 328: {1}
// 0000041A: 22 02 00 ............... "".."
0x22, 0x02, 0x00, // 0000041D: 79 00 .................. "y."
0x79, 0x00,
]
.to_vec();
let value: AmlValue = AmlValue::Buffer(Arc::new(spinning_top::Spinlock::new(bytes)));
let resources = resource_descriptor_list(&value).unwrap();
assert_eq!(
resources,
Vec::from([
Resource::IOPort(IOPortDescriptor {
decodes_full_address: true,
memory_range: (0x60, 0x60),
base_alignment: 1,
range_length: 1
}),
Resource::IOPort(IOPortDescriptor {
decodes_full_address: true,
memory_range: (0x64, 0x64),
base_alignment: 1,
range_length: 1
}),
Resource::Irq(IrqDescriptor {
is_consumer: false,
trigger: InterruptTrigger::Edge,
polarity: InterruptPolarity::ActiveHigh,
is_shared: false,
is_wake_capable: false,
irq: Irq::Single(1 << 1)
})
])
);
}
#[test]
fn test_pci_crs() {
let bytes: Vec<u8> = [
// Generated from `iasl -l pc-bios_acpi-dsdt.asl`
//
// 98: WordBusNumber (ResourceProducer, MinFixed, MaxFixed, PosDecode,
// 99: 0x0000, // Granularity
// 100: 0x0000, // Range Minimum
// 101: 0x00FF, // Range Maximum
// 102: 0x0000, // Translation Offset
// 103: 0x0100, // Length
// 104: ,, )
// 000000F3: 88 0D 00 02 0C 00 00 00 "........"
// 000000FB: 00 00 FF 00 00 00 00 01 "........"
0x88, 0x0D, 0x00, 0x02, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01,
// 105: IO (Decode16,
// 106: 0x0CF8, // Range Minimum
// 107: 0x0CF8, // Range Maximum
// 108: 0x01, // Alignment
// 109: 0x08, // Length
// 110: )
// 00000103: 47 01 F8 0C F8 0C 01 08 "G......."
0x47, 0x01, 0xF8, 0x0C, 0xF8, 0x0C, 0x01, 0x08,
// 111: WordIO (ResourceProducer, MinFixed, MaxFixed, PosDecode, EntireRange,
// 112: 0x0000, // Granularity
// 113: 0x0000, // Range Minimum
// 114: 0x0CF7, // Range Maximum
// 115: 0x0000, // Translation Offset
// 116: 0x0CF8, // Length
// 117: ,, , TypeStatic, DenseTranslation)
// 0000010B: 88 0D 00 01 0C 03 00 00 "........"
// 00000113: 00 00 F7 0C 00 00 F8 0C "........"
0x88, 0x0D, 0x00, 0x01, 0x0C, 0x03, 0x00, 0x00, 0x00, 0x00, 0xF7, 0x0C, 0x00, 0x00, 0xF8, 0x0C,
// 118: WordIO (ResourceProducer, MinFixed, MaxFixed, PosDecode, EntireRange,
// 119: 0x0000, // Granularity
// 120: 0x0D00, // Range Minimum
// 121: 0xFFFF, // Range Maximum
// 122: 0x0000, // Translation Offset
// 123: 0xF300, // Length
// 124: ,, , TypeStatic, DenseTranslation)
// 0000011B: 88 0D 00 01 0C 03 00 00 "........"
// 00000123: 00 0D FF FF 00 00 00 F3 "........"
0x88, 0x0D, 0x00, 0x01, 0x0C, 0x03, 0x00, 0x00, 0x00, 0x0D, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0xF3,
// 125: DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, Cacheable, ReadWrite,
// 126: 0x00000000, // Granularity
// 127: 0x000A0000, // Range Minimum
// 128: 0x000BFFFF, // Range Maximum
// 129: 0x00000000, // Translation Offset
// 130: 0x00020000, // Length
// 131: ,, , AddressRangeMemory, TypeStatic)
// 0000012B: 87 17 00 00 0C 03 00 00 "........"
// 00000133: 00 00 00 00 0A 00 FF FF "........"
// 0000013B: 0B 00 00 00 00 00 00 00 "........"
// 00000143: 02 00 .................. ".."
0x87, 0x17, 0x00, 0x00, 0x0C, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0xFF, 0xFF, 0x0B,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,
// 132: DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, NonCacheable, ReadWrite,
// 133: 0x00000000, // Granularity
// 134: 0xE0000000, // Range Minimum
// 135: 0xFEBFFFFF, // Range Maximum
// 136: 0x00000000, // Translation Offset
// 137: 0x1EC00000, // Length
// 138: ,, _Y00, AddressRangeMemory, TypeStatic)
// 00000145: 87 17 00 00 0C 01 00 00 "........"
// 0000014D: 00 00 00 00 00 E0 FF FF "........"
// 00000155: BF FE 00 00 00 00 00 00 "........"
// 0000015D: C0 1E .................. ".."
0x87, 0x17, 0x00, 0x00, 0x0C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0xFF, 0xFF, 0xBF,
0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x1E,
// 0000015F: 79 00 .................. "y."
0x79, 0x00,
]
.to_vec();
let value: AmlValue = AmlValue::Buffer(Arc::new(spinning_top::Spinlock::new(bytes)));
let resources = resource_descriptor_list(&value).unwrap();
assert_eq!(
resources,
Vec::from([
Resource::AddressSpace(AddressSpaceDescriptor {
resource_type: AddressSpaceResourceType::BusNumberRange,
is_maximum_address_fixed: true,
is_minimum_address_fixed: true,
decode_type: AddressSpaceDecodeType::Additive,
granularity: 0,
address_range: (0x00, 0xFF),
translation_offset: 0,
length: 0x100
}),
Resource::IOPort(IOPortDescriptor {
decodes_full_address: true,
memory_range: (0xCF8, 0xCF8),
base_alignment: 1,
range_length: 8
}),
Resource::AddressSpace(AddressSpaceDescriptor {
resource_type: AddressSpaceResourceType::IORange,
is_maximum_address_fixed: true,
is_minimum_address_fixed: true,
decode_type: AddressSpaceDecodeType::Additive,
granularity: 0,
address_range: (0x0000, 0x0CF7),
translation_offset: 0,
length: 0xCF8
}),
Resource::AddressSpace(AddressSpaceDescriptor {
resource_type: AddressSpaceResourceType::IORange,
is_maximum_address_fixed: true,
is_minimum_address_fixed: true,
decode_type: AddressSpaceDecodeType::Additive,
granularity: 0,
address_range: (0x0D00, 0xFFFF),
translation_offset: 0,
length: 0xF300
}),
Resource::AddressSpace(AddressSpaceDescriptor {
resource_type: AddressSpaceResourceType::MemoryRange,
is_maximum_address_fixed: true,
is_minimum_address_fixed: true,
decode_type: AddressSpaceDecodeType::Additive,
granularity: 0,
address_range: (0xA0000, 0xBFFFF),
translation_offset: 0,
length: 0x20000
}),
Resource::AddressSpace(AddressSpaceDescriptor {
resource_type: AddressSpaceResourceType::MemoryRange,
is_maximum_address_fixed: true,
is_minimum_address_fixed: true,
decode_type: AddressSpaceDecodeType::Additive,
granularity: 0,
address_range: (0xE0000000, 0xFEBFFFFF),
translation_offset: 0,
length: 0x1EC00000
}),
])
);
}
#[test]
fn test_fdc_crs() {
let bytes: Vec<u8> = [
// 365: IO (Decode16,
// 366: 0x03F2, // Range Minimum
// 367: 0x03F2, // Range Maximum
// 368: 0x00, // Alignment
// 369: 0x04, // Length
// 370: )
// 0000047C: 47 01 F2 03 F2 03 00 04 "G......."
0x47, 0x01, 0xF2, 0x03, 0xF2, 0x03, 0x00, 0x04,
// 371: IO (Decode16,
// 372: 0x03F7, // Range Minimum
// 373: 0x03F7, // Range Maximum
// 374: 0x00, // Alignment
// 375: 0x01, // Length
// 376: )
// 00000484: 47 01 F7 03 F7 03 00 01 "G......."
0x47, 0x01, 0xF7, 0x03, 0xF7, 0x03, 0x00, 0x01,
// 377: IRQNoFlags ()
// 378: {6}
// 0000048C: 22 40 00 ............... ""@."
0x22, 0x40, 0x00,
// 379: DMA (Compatibility, NotBusMaster, Transfer8, )
// 380: {2}
// 0000048F: 2A 04 00 ............... "*.."
0x2A, 0x04, 0x00, // 00000492: 79 00 .................. "y."
0x79, 0x00,
]
.to_vec();
let value: AmlValue = AmlValue::Buffer(Arc::new(spinning_top::Spinlock::new(bytes)));
let resources = resource_descriptor_list(&value).unwrap();
assert_eq!(
resources,
Vec::from([
Resource::IOPort(IOPortDescriptor {
decodes_full_address: true,
memory_range: (0x03F2, 0x03F2),
base_alignment: 0,
range_length: 4
}),
Resource::IOPort(IOPortDescriptor {
decodes_full_address: true,
memory_range: (0x03F7, 0x03F7),
base_alignment: 0,
range_length: 1
}),
Resource::Irq(IrqDescriptor {
is_consumer: false,
trigger: InterruptTrigger::Edge,
polarity: InterruptPolarity::ActiveHigh,
is_shared: false,
is_wake_capable: false,
irq: Irq::Single(1 << 6)
}),
Resource::Dma(DMADescriptor {
channel_mask: 1 << 2,
supported_speeds: DMASupportedSpeed::CompatibilityMode,
is_bus_master: false,
transfer_type_preference: DMATransferTypePreference::_8BitOnly
})
])
);
}
}