-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.py
95 lines (72 loc) · 3.06 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def default_conv(in_channels, out_channels, kernel_size, bias=True):
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), bias=bias)
class MeanShift(nn.Conv2d):
def __init__(self, rgb_range, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
self.requires_grad = False
class BasicBlock(nn.Sequential):
def __init__(self, conv, in_channels, out_channels, kernel_size, stride=1, bias=False, bn=True, act=nn.ReLU(True)):
m = [conv(in_channels, out_channels, kernel_size, bias=bias)]
if bn: m.append(nn.BatchNorm2d(out_channels))
if act is not None: m.append(act)
super(BasicBlock, self).__init__(*m)
class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class ResBlock(nn.Module):
def __init__(self, conv, n_feats, kernel_size,bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
super(ResBlock, self).__init__()
m = []
for i in range(2):
m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
if bn:
m.append(nn.BatchNorm2d(n_feats))
if i == 0:
m.append(act)
self.body = nn.Sequential(*m)
self.res_scale = res_scale
self.squeeze = SEBlock(n_feats)
def forward(self, x):
res = self.body(x).mul(self.res_scale)
res = self.squeeze(res)
res += x
return res
class Upsampler(nn.Sequential):
def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):
m = []
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
for _ in range(int(math.log(scale, 2))):
m.append(conv(n_feats, 4 * n_feats, 3, bias))
m.append(nn.PixelShuffle(2))
if bn:
m.append(nn.BatchNorm2d(n_feats))
if act == 'relu':
m.append(nn.ReLU())
elif act == 'prelu':
m.append(nn.PReLU())
elif act == 'lrelu':
m.append(nn.LeakyReLU(0.2, inplace=True))
else:
raise NotImplementedError
super(Upsampler, self).__init__(*m)