-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_Sony.py
195 lines (147 loc) · 6.15 KB
/
train_Sony.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import time
import numpy as np
import rawpy
import glob
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from EDSR_model import EDSR
from model import SeeInDark
input_dir = './Sony/Sony/short/'
gt_dir = './Sony/Sony/long/'
result_dir = './result_Sony/'
model_dir = './saved_model/'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(f"Device: {device}")
#get train and test IDs
train_fns = glob.glob(gt_dir + '0*.ARW')
train_ids = []
for i in range(len(train_fns)):
_, train_fn = os.path.split(train_fns[i])
train_ids.append(int(train_fn[0:5]))
test_fns = glob.glob(gt_dir + '/1*.ARW')
test_ids = []
for i in range(len(test_fns)):
_, test_fn = os.path.split(test_fns[i])
test_ids.append(int(test_fn[0:5]))
ps = 512 #patch size for training
save_freq = 100
DEBUG = 0
if DEBUG == 1:
save_freq = 100
train_ids = train_ids[0:5]
test_ids = test_ids[0:5]
def pack_raw(raw):
#pack Bayer image to 4 channels
im = raw.raw_image_visible.astype(np.float32)
im = np.maximum(im - 512,0)/ (16383 - 512) #subtract the black level
im = np.expand_dims(im,axis=2)
img_shape = im.shape
H = img_shape[0]
W = img_shape[1]
out = np.concatenate((im[0:H:2,0:W:2,:],
im[0:H:2,1:W:2,:],
im[1:H:2,1:W:2,:],
im[1:H:2,0:W:2,:]), axis=2)
return out
def reduce_mean(out_im, gt_im):
return torch.abs(out_im - gt_im).mean()
#Raw data takes long time to load. Keep them in memory after loaded.
gt_images=[None]*6000
input_images = {}
input_images['300'] = [None]*len(train_ids)
input_images['250'] = [None]*len(train_ids)
input_images['100'] = [None]*len(train_ids)
g_loss = np.zeros((5000,1))
allfolders = glob.glob('./result/*0')
lastepoch = 0
for folder in allfolders:
lastepoch = np.maximum(lastepoch, int(folder[-4:]))
learning_rate = 1e-4
import argparse
# Argument for EDSR
parser = argparse.ArgumentParser(description='EDSR')
parser.add_argument('--n_resblocks', type=int, default=32,
help='number of residual blocks')
parser.add_argument('--n_feats', type=int, default=64,
help='number of feature maps')
parser.add_argument('--res_scale', type=float, default=1,
help='residual scaling')
parser.add_argument('--scale', type=str, default=2,
help='super resolution scale')
parser.add_argument('--patch_size', type=int, default=256,
help='output patch size')
parser.add_argument('--n_colors', type=int, default=4,
help='number of input color channels to use')
parser.add_argument('--o_colors', type=int, default=3,
help='number of output color channels to use')
args = parser.parse_args()
model = EDSR(args).to(device)
# model.initialize_weights()
opt = optim.Adam(model.parameters(), lr = learning_rate)
for epoch in range(lastepoch,4001):
if os.path.isdir("result/%04d"%epoch):
continue
cnt=0
if epoch > 2000:
for g in opt.param_groups:
g['lr'] = 1e-5
for ind in np.random.permutation(len(train_ids)):
# get the path from image id
train_id = train_ids[ind]
in_files = glob.glob(input_dir + '%05d_00*.ARW'%train_id)
in_path = in_files[np.random.randint(0,len(in_files))]
_, in_fn = os.path.split(in_path)
gt_files = glob.glob(gt_dir + '%05d_00*.ARW'%train_id)
gt_path = gt_files[0]
_, gt_fn = os.path.split(gt_path)
in_exposure = float(in_fn[9:-5])
gt_exposure = float(gt_fn[9:-5])
ratio = min(gt_exposure/in_exposure,300)
st=time.time()
cnt+=1
if input_images[str(ratio)[0:3]][ind] is None:
raw = rawpy.imread(in_path)
input_images[str(ratio)[0:3]][ind] = np.expand_dims(pack_raw(raw),axis=0) *ratio
gt_raw = rawpy.imread(gt_path)
im = gt_raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
gt_images[ind] = np.expand_dims(np.float32(im/65535.0),axis = 0)
#crop
H = input_images[str(ratio)[0:3]][ind].shape[1]
W = input_images[str(ratio)[0:3]][ind].shape[2]
xx = np.random.randint(0,W-ps)
yy = np.random.randint(0,H-ps)
input_patch = input_images[str(ratio)[0:3]][ind][:,yy:yy+ps,xx:xx+ps,:]
gt_patch = gt_images[ind][:,yy*2:yy*2+ps*2,xx*2:xx*2+ps*2,:]
if np.random.randint(2,size=1)[0] == 1: # random flip
input_patch = np.flip(input_patch, axis=1)
gt_patch = np.flip(gt_patch, axis=1)
if np.random.randint(2,size=1)[0] == 1:
input_patch = np.flip(input_patch, axis=2)
gt_patch = np.flip(gt_patch, axis=2)
if np.random.randint(2,size=1)[0] == 1: # random transpose
input_patch = np.transpose(input_patch, (0,2,1,3))
gt_patch = np.transpose(gt_patch, (0,2,1,3))
input_patch = np.minimum(input_patch,1.0)
gt_patch = np.maximum(gt_patch, 0.0)
in_img = torch.from_numpy(input_patch).permute(0,3,1,2).to(device)
gt_img = torch.from_numpy(gt_patch).permute(0,3,1,2).to(device)
model.zero_grad()
out_img = model(in_img)
loss = reduce_mean(out_img, gt_img)
loss.backward()
opt.step()
g_loss[ind]=loss.data.cpu()
mean_loss = np.mean(g_loss[np.where(g_loss)])
print(f"Epoch: {epoch} \t Count: {cnt} \t Loss={mean_loss:.3} \t Time={time.time()-st:.3}")
if epoch%save_freq==0:
epoch_result_dir = result_dir + f'{epoch:04}/'
if not os.path.isdir(epoch_result_dir):
os.makedirs(epoch_result_dir)
output = out_img.permute(0, 2, 3, 1).cpu().data.numpy()
output = np.minimum(np.maximum(output,0),1)
temp = np.concatenate((gt_patch[0,:,:,:], output[0,:,:,:]),axis=1)
Image.fromarray((temp*255).astype('uint8')).save(epoch_result_dir + f'{train_id:05}_00_train_{ratio}.jpg')
torch.save(model.state_dict(), model_dir+'checkpoint_sony_e%04d.pth'%epoch)