-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdataset.py
121 lines (99 loc) · 3.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import Dataset
import numpy as np
import pickle
import pandas as pd
from PIL import Image
def load_mnist(root):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Lambda(lambda x: torch.where(x < 0.5, -1., 1.))])
trainset = datasets.MNIST(root, train=True, transform=transform, download=True)
testset = datasets.MNIST(root, train=False, transform=transform, download=True)
return trainset, testset
def load_news(root):
# read data from pickle file
with open(f"{root}/cleaned_categories10.pkl", "rb") as f:
data = pickle.load(f)
x, y = data["x"].toarray(), data["y"]
label_ids, vocab = data["label_ids"], data["vocab"]
# binarize by thresholding 0
x = np.where((x > 0), np.ones(x.shape), -np.ones(x.shape))
x = np.float32(x)
# split into sub-datasets
dataset = torch.utils.data.TensorDataset(torch.from_numpy(x), torch.from_numpy(y))
train, val, test = torch.utils.data.random_split(
dataset,
[
round(0.8 * len(dataset)),
round(0.1 * len(dataset)),
len(dataset) - round(0.8 * len(dataset)) - round(0.1 * len(dataset)),
],
torch.Generator().manual_seed(42), # Use same seed to split data
)
return train, val, test, vocab, list(label_ids)
class CUB200(Dataset):
"""
Returns a compatible Torch Dataset object customized for the CUB dataset
"""
def __init__(
self,
root,
image_dir='CUB_200_2011',
split='train',
transform=None,
):
self.root = root
self.image_dir = os.path.join(self.root, 'CUB', image_dir)
self.transform = transform
## Image
pkl_file_path = os.path.join(self.root, 'CUB', f'{split}class_level_all_features.pkl')
self.data = []
with open(pkl_file_path, "rb") as f:
self.data.extend(pickle.load(f))
## Classes
self.classes = pd.read_csv(os.path.join(self.image_dir, 'classes.txt'), header=None).iloc[:, 0].values
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
_dict = self.data[idx]
# image
img_path = _dict['img_path']
_idx = img_path.split("/").index("CUB_200_2011")
img_path = os.path.join(self.root, 'CUB/CUB_200_2011', *img_path.split("/")[_idx + 1 :])
img = Image.open(img_path).convert("RGB")
if self.transform:
img = self.transform(img)
# class label
class_label = _dict["class_label"]
return img, class_label
def load_cub(root):
transform = transforms.Compose(
[
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[2, 2, 2])
]
)
trainset = CUB200(root, image_dir='CUB_200_2011', split='train', transform=transform)
testset = CUB200(root, image_dir='CUB_200_2011', split='test', transform=transform)
valset = CUB200(root, image_dir='CUB_200_2011', split='val', transform=transform)
return trainset, valset, testset
def load_cifar10(root):
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(
root=root, train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(
root=root, train=False, download=True, transform=transform_test)
return trainset, testset