Skip to content

Latest commit

 

History

History
63 lines (48 loc) · 2.04 KB

README.md

File metadata and controls

63 lines (48 loc) · 2.04 KB

Relation extraction (modelling the label noise)

Code for modelling label noie in distantly supervised relation extraction.

Usage help

usage: main.py [-h] [--encoder ENCODER] [--selector SELECTOR]
               [--loss_type LOSS_TYPE] [--bs_val BS_VAL] [--dataset DATASET]
               [--chkpt_pt CHKPT_PT] [--l2_val L2_VAL]

Running code for relation extraction.

optional arguments:
  -h, --help            show this help message and exit
  --encoder ENCODER     select the encoders from pcnn ,pbrnn ,pcnn2 (stacked
                        pcnn) ,rnn ,brnn ,crnn ,crnn2 ,bgwa
  --selector SELECTOR   select the bag selector from att, cross_sent_max
  --loss_type LOSS_TYPE
                        select the loss type from none, extra (layer for noise
                        modelling), hard (bootstrapping), soft (bootstrapping)
  --bs_val BS_VAL       select the bootstrapping value (only valid if loss is
                        of type hard/soft)
  --dataset DATASET     select the dataset from nyt/wiki
  --chkpt_pt CHKPT_PT   path to saved model (empty if no checkpoint to load
                        from)
  --l2_val L2_VAL       l2 lambda value

Results

Results on NYT dataset

Results for cross senence maxpooling on NYT dataset

Encoder  | Selector       |  AUC
---------------------------------
pcnn     | att            | 0.338
rnn      | att            | 0.333
brnn     | att            | 0.344
pcnn     | cross-sent-max | 0.369
rnn      | cross-sent-max | 0.385
brnn     | cross-sent-max | 0.383

Results for modelling label noise on NYT dataset

Mechanism                  | AUC
----------------------------------
PCNN + ATT                 | 0.338
PCNN + ATT + extra_layer   | 0.348

We found that value of AUC score decreased for bootsrapping methods both hard and soft.

References

  1. THUNLP's relation extraction
  2. Adversarial methods for relation extraction
  3. Soft label methods fro relation extraction