forked from artagnon/phoenixfs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbtree.c
1143 lines (956 loc) · 26.2 KB
/
btree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "btree.h"
/*
*
* bpt: B+ Tree Implementation
* Copyright (C) 2010 Amittai Aviram http://www.amittai.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Author: Amittai Aviram
* http://www.amittai.com
* Department of Computer Science
* Yale University
* P. O. Box 208285
* New Haven, CT 06520-8285
* Date: 26 June 2010
* Last modified: 28 February 2011
*
* This implementation demonstrates the B+ tree data structure
* for educational purposes, includin insertion, deletion, search, and display
* of the search path, the leaves, or the whole tree.
*
* Must be compiled with a C99-compliant C compiler such as the latest GCC.
*
* Usage: bpt [order]
* where order is an optional argument (integer 3 <= order <= 20)
* defined as the maximal number of pointers in any node.
*
*/
// Uncomment the line below if you are compiling on Windows.
// #define WINDOWS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// GLOBALS.
/*The order determines the maximum and minimum
*number of entries (keys and pointers) in any
*node. Every node has at most order - 1 keys and
*at least (roughly speaking) half that number.
*Every leaf has as many pointers to data as keys,
*and every internal node has one more pointer
*to a subtree than the number of keys.
*This global variable is initialized to the
*default value.
*/
int order = BTREE_ORDER;
/*The queue is used to print the tree in
*level order, starting from the root
*printing each entire rank on a separate
*line, finishing with the leaves.
*/
node *queue = NULL;
/*The user can toggle on and off the "verbose"
*property, which causes the pointer addresses
*to be printed out in hexadecimal notation
*next to their corresponding keys.
*/
bool verbose_output = false;
// FUNCTION DEFINITIONS.
// OUTPUT AND UTILITIES
/*First message to the user.
*/
void usage_1(void)
{
printf("B+ Tree of Order %d.\n", order);
printf("Following Silberschatz, Korth, Sidarshan, Database Concepts, 5th ed.\n\n");
printf("To build a B+ tree of a different order, start again and enter the order\n");
printf("as an integer argument: bpt <order> ");
printf("(3 <= order <=20).\n");
printf("To start with input from a file of newline-delimited integers, \n"
"start again and enter ");
printf("the order followed by the filename:\n"
"bpt <order> <inputfile> .\n");
}
/*Second message to the user.
*/
void usage_2(void)
{
printf("Enter any of the following commands after the prompt > :\n");
printf("\ti <k> -- Insert <k> (an integer) as both key and value).\n");
printf("\tf <k> -- Find the value under key <k>.\n");
printf("\tp <k> -- Print the path from the root to key k and its associated value.\n");
printf("\td <k> -- Delete key <k> and its associated value.\n");
printf("\tx -- Destroy the whole tree. Start again with an empty tree of the same order.\n");
printf("\tt -- Print the B+ tree.\n");
printf("\tl -- Print the keys of the leaves (bottom row of the tree).\n");
printf("\tv -- Toggle output of pointer addresses (\"verbose\") in tree and leaves.\n");
printf("\tq -- Quit. (Or use Ctl-D.)\n");
printf("\t? -- Print this help message.\n");
}
/*Helper function for printing the
*tree out. See print_tree.
*/
void enqueue(node *new_node)
{
node *c;
if (queue == NULL) {
queue = new_node;
queue->next = NULL;
}
else {
c = queue;
while(c->next != NULL) {
c = c->next;
}
c->next = new_node;
new_node->next = NULL;
}
}
/*Helper function for printing the
*tree out. See print_tree.
*/
node *dequeue(void)
{
node *n = queue;
queue = queue->next;
n->next = NULL;
return n;
}
/*Prints the bottom row of keys
*of the tree (with their respective
*pointers, if the verbose_output flag is set.
*/
void print_leaves(node *root)
{
int i;
node *c = root;
if (root == NULL) {
printf("Empty tree.\n");
return;
}
while (!c->is_leaf)
c = c->pointers[0];
while (true) {
for (i = 0; i < c->num_keys; i++) {
if (verbose_output)
printf("%lx ", (unsigned long)c->pointers[i]);
printf("%d ", c->keys[i]);
}
if (verbose_output)
printf("%lx ", (unsigned long)c->pointers[order - 1]);
if (c->pointers[order - 1] != NULL) {
printf(" | ");
c = c->pointers[order - 1];
}
else
break;
}
printf("\n");
}
/*Utility function to give the height
*of the tree, which length in number of edges
*of the path from the root to any leaf.
*/
int height(node *root)
{
int h = 0;
node *c = root;
while (!c->is_leaf) {
c = c->pointers[0];
h++;
}
return h;
}
/*Utility function to give the length in edges
*of the path from any node to the root.
*/
int path_to_root(node *root, node *child)
{
int length = 0;
node *c = child;
while (c != root) {
c = c->parent;
length++;
}
return length;
}
/*Prints the B+ tree in the command
*line in level (rank) order, with the
*keys in each node and the '|' symbol
*to separate nodes.
*With the verbose_output flag set.
*the values of the pointers corresponding
*to the keys also appear next to their respective
*keys, in hexadecimal notation.
*/
void print_tree(node *root)
{
node *n = NULL;
int i = 0;
int rank = 0;
int new_rank = 0;
if (root == NULL) {
printf("Empty tree.\n");
return;
}
queue = NULL;
enqueue(root);
while (queue != NULL) {
n = dequeue();
if (n->parent != NULL && n == n->parent->pointers[0]) {
new_rank = path_to_root (root, n);
if (new_rank != rank) {
rank = new_rank;
printf("\n");
}
}
if (verbose_output)
printf("(%lx)", (unsigned long)n);
for (i = 0; i < n->num_keys; i++) {
if (verbose_output)
printf("%lx ", (unsigned long)n->pointers[i]);
printf("%d ", n->keys[i]);
}
if (!n->is_leaf)
for (i = 0; i <= n->num_keys; i++)
enqueue(n->pointers[i]);
if (verbose_output) {
if (n->is_leaf)
printf("%lx ", (unsigned long)n->pointers[order - 1]);
else
printf("%lx ", (unsigned long)n->pointers[n->num_keys]);
}
printf("| ");
}
printf("\n");
}
/*Traces the path from the root to a leaf, searching
*by key. Displays information about the path
*if the verbose flag is set.
*Returns the leaf containing the given key.
*/
node *find_leaf(node *root, uint16_t key, bool verbose)
{
int i = 0;
node *c = root;
if (c == NULL) {
if (verbose)
printf("Empty tree.\n");
return c;
}
while (!c->is_leaf) {
if (verbose) {
printf("[");
for (i = 0; i < c->num_keys - 1; i++)
printf("%d ", c->keys[i]);
printf("%d] ", c->keys[i]);
}
i = 0;
while (i < c->num_keys) {
if (key >= c->keys[i]) i++;
else break;
}
if (verbose)
printf("%d ->\n", i);
c = (node *)c->pointers[i];
}
if (verbose) {
printf("Leaf [");
for (i = 0; i < c->num_keys - 1; i++)
printf("%d ", c->keys[i]);
printf("%d] ->\n", c->keys[i]);
}
return c;
}
/*Finds and returns the record to which
*a key refers.
*/
void *find(node *root, uint16_t key, bool verbose)
{
int i = 0;
node *c = find_leaf (root, key, verbose);
if (c == NULL) return NULL;
for (i = 0; i < c->num_keys; i++)
if (c->keys[i] == key) break;
if (i == c->num_keys)
return NULL;
else
return c->pointers[i];
}
/*Finds the appropriate place to
*split a node that is too big into two.
*/
int cut(int length)
{
if (length % 2 == 0)
return length/2;
else
return length/2 + 1;
}
// INSERTION
/*Creates a new general node, which can be adapted
*to serve as either a leaf or an internal node.
*/
node *make_node(void)
{
node *new_node;
new_node = malloc(sizeof(node));
memset(new_node, 0, sizeof(node));
if (new_node == NULL) {
perror("Node creation.");
exit(EXIT_FAILURE);
}
new_node->keys = malloc ((order - 1) * sizeof(uint16_t));
if (new_node->keys == NULL) {
perror("New node keys array.");
exit(EXIT_FAILURE);
}
new_node->pointers = malloc (order * sizeof(void *));
if (new_node->pointers == NULL) {
perror("New node pointers array.");
exit(EXIT_FAILURE);
}
new_node->is_leaf = false;
new_node->num_keys = 0;
new_node->parent = NULL;
new_node->next = NULL;
return new_node;
}
/*Creates a new leaf by creating a node
*and then adapting it appropriately.
*/
node *make_leaf(void)
{
node *leaf = make_node();
leaf->is_leaf = true;
return leaf;
}
/*Helper function used in insert_into_parent
*to find the index of the parent's pointer to
*the node to the left of the key to be inserted.
*/
int get_left_index(node *parent, node *left)
{
int left_index = 0;
while (left_index <= parent->num_keys &&
parent->pointers[left_index] != left)
left_index++;
return left_index;
}
/*Inserts a new pointer to a record and its corresponding
*key into a leaf.
*Returns the altered leaf.
*/
node *insert_into_leaf(node *leaf, uint16_t key, struct dir_record *pointer)
{
int i, insertion_point;
insertion_point = 0;
while (insertion_point < leaf->num_keys && leaf->keys[insertion_point] < key)
insertion_point++;
for (i = leaf->num_keys; i > insertion_point; i--) {
leaf->keys[i] = leaf->keys[i - 1];
leaf->pointers[i] = leaf->pointers[i - 1];
}
leaf->keys[insertion_point] = key;
leaf->pointers[insertion_point] = pointer;
leaf->num_keys++;
return leaf;
}
/*Inserts a new key and pointer
*to a new record into a leaf so as to exceed
*the tree's order, causing the leaf to be split
*in half.
*/
node *insert_into_leaf_after_splitting(node *root, node *leaf,
uint16_t key, struct dir_record *pointer)
{
node *new_leaf;
uint16_t *temp_keys;
void **temp_pointers;
int insertion_index, split;
uint16_t new_key;
register int i, j;
new_leaf = make_leaf();
temp_keys = malloc (order * sizeof(uint16_t));
if (temp_keys == NULL) {
perror("Temporary keys array.");
exit(EXIT_FAILURE);
}
temp_pointers = malloc (order *sizeof(void *));
if (temp_pointers == NULL) {
perror("Temporary pointers array.");
exit(EXIT_FAILURE);
}
insertion_index = 0;
while (insertion_index < order - 1 && leaf->keys[insertion_index] < key)
insertion_index++;
for (i = 0, j = 0; i < leaf->num_keys; i++, j++) {
if (j == insertion_index) j++;
temp_keys[j] = leaf->keys[i];
temp_pointers[j] = leaf->pointers[i];
}
temp_keys[insertion_index] = key;
temp_pointers[insertion_index] = pointer;
leaf->num_keys = 0;
split = cut(order - 1);
for (i = 0; i < split; i++) {
leaf->pointers[i] = temp_pointers[i];
leaf->keys[i] = temp_keys[i];
leaf->num_keys++;
}
for (i = split, j = 0; i < order; i++, j++) {
new_leaf->pointers[j] = temp_pointers[i];
new_leaf->keys[j] = temp_keys[i];
new_leaf->num_keys++;
}
free(temp_pointers);
free(temp_keys);
new_leaf->pointers[order - 1] = leaf->pointers[order - 1];
leaf->pointers[order - 1] = new_leaf;
for (i = leaf->num_keys; i < order - 1; i++)
leaf->pointers[i] = NULL;
for (i = new_leaf->num_keys; i < order - 1; i++)
new_leaf->pointers[i] = NULL;
new_leaf->parent = leaf->parent;
new_key = new_leaf->keys[0];
return insert_into_parent(root, leaf, new_key, new_leaf);
}
/*Inserts a new key and pointer to a node
*into a node into which these can fit
*without violating the B+ tree properties.
*/
node *insert_into_node(node *root, node *n,
int left_index, uint16_t key, node *right)
{
register int i;
for (i = n->num_keys; i > left_index; i--) {
n->pointers[i + 1] = n->pointers[i];
n->keys[i] = n->keys[i - 1];
}
n->pointers[left_index + 1] = right;
n->keys[left_index] = key;
n->num_keys++;
return root;
}
/*Inserts a new key and pointer to a node
*into a node, causing the node's size to exceed
*the order, and causing the node to split into two.
*/
node *insert_into_node_after_splitting(node *root, node *old_node, int left_index,
uint16_t key, node *right)
{
int split, k_prime;
node *new_node, *child;
uint16_t *temp_keys;
node **temp_pointers;
register int i, j;
/*First create a temporary set of keys and pointers
*to hold everything in order, including
*the new key and pointer, inserted in their
*correct places.
*Then create a new node and copy half of the
*keys and pointers to the old node and
*the other half to the new.
*/
temp_pointers = malloc ((order + 1) *sizeof(node *));
if (temp_pointers == NULL) {
perror("Temporary pointers array for splitting nodes.");
exit(EXIT_FAILURE);
}
temp_keys = malloc (order *sizeof(uint16_t));
if (temp_keys == NULL) {
perror("Temporary keys array for splitting nodes.");
exit(EXIT_FAILURE);
}
for (i = 0, j = 0; i < old_node->num_keys + 1; i++, j++) {
if (j == left_index + 1) j++;
temp_pointers[j] = old_node->pointers[i];
}
for (i = 0, j = 0; i < old_node->num_keys; i++, j++) {
if (j == left_index) j++;
temp_keys[j] = old_node->keys[i];
}
temp_pointers[left_index + 1] = right;
temp_keys[left_index] = key;
/*Create the new node and copy
*half the keys and pointers to the
*old and half to the new.
*/
split = cut(order);
new_node = make_node();
old_node->num_keys = 0;
for (i = 0; i < split - 1; i++) {
old_node->pointers[i] = temp_pointers[i];
old_node->keys[i] = temp_keys[i];
old_node->num_keys++;
}
old_node->pointers[i] = temp_pointers[i];
k_prime = temp_keys[split - 1];
for (++i, j = 0; i < order; i++, j++) {
new_node->pointers[j] = temp_pointers[i];
new_node->keys[j] = temp_keys[i];
new_node->num_keys++;
}
new_node->pointers[j] = temp_pointers[i];
free(temp_pointers);
free(temp_keys);
new_node->parent = old_node->parent;
for (i = 0; i <= new_node->num_keys; i++) {
child = new_node->pointers[i];
child->parent = new_node;
}
/*Insert a new key into the parent of the two
*nodes resulting from the split, with
*the old node to the left and the new to the right.
*/
return insert_into_parent(root, old_node, k_prime, new_node);
}
/*Inserts a new node (leaf or internal node) into the B+ tree.
*Returns the root of the tree after insertion.
*/
node *insert_into_parent(node *root, node *left, uint16_t key, node *right)
{
int left_index;
node *parent;
parent = left->parent;
/*Case: new root. */
if (parent == NULL)
return insert_into_new_root(left, key, right);
/*Case: leaf or node. (Remainder of
*function body.)
*/
/*Find the parent's pointer to the left
*node.
*/
left_index = get_left_index(parent, left);
/*Simple case: the new key fits into the node.
*/
if (parent->num_keys < order - 1)
return insert_into_node(root, parent, left_index, key, right);
/*Harder case: split a node in order
*to preserve the B+ tree properties.
*/
return insert_into_node_after_splitting(root, parent, left_index, key, right);
}
/*Creates a new root for two subtrees
*and inserts the appropriate key into
*the new root.
*/
node *insert_into_new_root(node *left, uint16_t key, node *right)
{
node *root = make_node();
root->keys[0] = key;
root->pointers[0] = left;
root->pointers[1] = right;
root->num_keys++;
root->parent = NULL;
left->parent = root;
right->parent = root;
return root;
}
/*First insertion:
*start a new tree.
*/
node *start_new_tree(uint16_t key, struct dir_record *pointer)
{
node *root = make_leaf();
root->keys[0] = key;
root->pointers[0] = pointer;
root->pointers[order - 1] = NULL;
root->parent = NULL;
root->num_keys++;
return root;
}
/*Master insertion function.
*Inserts a key and an associated value into
*the B+ tree, causing the tree to be adjusted
*however necessary to maintain the B+ tree
*properties.
*/
node *insert(node *root, uint16_t key, void *value)
{
struct dir_record *pointer;
node *leaf;
/*The current implementation ignores
*duplicates.
*/
if (find(root, key, false) != NULL)
return root;
/*Create a new record for the
*value.
*/
pointer = value;
/*Case: the tree does not exist yet.
*Start a new tree.
*/
if (root == NULL)
return start_new_tree(key, pointer);
/*Case: the tree already exists.
*(Rest of function body.)
*/
leaf = find_leaf(root, key, false);
/*Case: leaf has room for key and pointer.
*/
if (leaf->num_keys < order - 1) {
leaf = insert_into_leaf(leaf, key, pointer);
return root;
}
/*Case: leaf must be split.
*/
return insert_into_leaf_after_splitting(root, leaf, key, pointer);
}
// DELETION.
/*Utility function for deletion. Retrieves
*the index of a node's nearest neighbor (sibling)
*to the left if one exists. If not (the node
*is the leftmost child), returns -1 to signify
*this special case.
*/
int get_neighbor_index(node *n)
{
register int i;
/*Return the index of the key to the left
*of the pointer in the parent pointing
*to n.
*If n is the leftmost child, this means
*return -1.
*/
for (i = 0; i <= n->parent->num_keys; i++)
if (n->parent->pointers[i] == n)
return i - 1;
// Error state.
printf("Search for nonexistent pointer to node in parent.\n");
printf("Node: %#lx\n", (unsigned long)n);
exit(EXIT_FAILURE);
}
node *remove_entry_from_node(node *n, uint16_t key, node *pointer)
{
register int i, num_pointers;
// Remove the key and shift other keys accordingly.
i = 0;
while (n->keys[i] != key)
i++;
for (++i; i < n->num_keys; i++)
n->keys[i - 1] = n->keys[i];
// Remove the pointer and shift other pointers accordingly.
// First determine number of pointers.
num_pointers = n->is_leaf ? n->num_keys : n->num_keys + 1;
i = 0;
while (n->pointers[i] != pointer)
i++;
for (++i; i < num_pointers; i++)
n->pointers[i - 1] = n->pointers[i];
// One key fewer.
n->num_keys--;
// Set the other pointers to NULL for tidiness.
// A leaf uses the last pointer to point to the next leaf.
if (n->is_leaf)
for (i = n->num_keys; i < order - 1; i++)
n->pointers[i] = NULL;
else
for (i = n->num_keys + 1; i < order; i++)
n->pointers[i] = NULL;
return n;
}
node *adjust_root(node *root)
{
node *new_root;
/*Case: nonempty root.
*Key and pointer have already been deleted,
*so nothing to be done.
*/
if (root->num_keys > 0)
return root;
/*Case: empty root.
*/
// If it has a child, promote
// the first (only) child
// as the new root.
if (!root->is_leaf) {
new_root = root->pointers[0];
new_root->parent = NULL;
}
// If it is a leaf (has no children),
// then the whole tree is empty.
else
new_root = NULL;
free(root->keys);
free(root->pointers);
free(root);
return new_root;
}
/*Coalesces a node that has become
*too small after deletion
*with a neighboring node that
*can accept the additional entries
*without exceeding the maximum.
*/
node *coalesce_nodes(node *root, node *n, node *neighbor, int neighbor_index, int k_prime)
{
int neighbor_insertion_index, n_start, n_end, new_k_prime = 0;
node *tmp;
bool split;
register int i, j;
/*Swap neighbor with node if node is on the
*extreme left and neighbor is to its right.
*/
if (neighbor_index == -1) {
tmp = n;
n = neighbor;
neighbor = tmp;
}
/*Starting point in the neighbor for copying
*keys and pointers from n.
*Recall that n and neighbor have swapped places
*in the special case of n being a leftmost child.
*/
neighbor_insertion_index = neighbor->num_keys;
/*
*Nonleaf nodes may sometimes need to remain split,
*if the insertion of k_prime would cause the resulting
*single coalesced node to exceed the limit order - 1.
*The variable split is always false for leaf nodes
*and only sometimes set to true for nonleaf nodes.
*/
split = false;
/*Case: nonleaf node.
*Append k_prime and the following pointer.
*If there is room in the neighbor, append
*all pointers and keys from the neighbor.
*Otherwise, append only cut(order) - 2 keys and
*cut(order) - 1 pointers.
*/
if (!n->is_leaf) {
/*Append k_prime.
*/
neighbor->keys[neighbor_insertion_index] = k_prime;
neighbor->num_keys++;
/*Case (default): there is room for all of n's keys and pointers
*in the neighbor after appending k_prime.
*/
n_end = n->num_keys;
/*Case (special): k cannot fit with all the other keys and pointers
*into one coalesced node.
*/
n_start = 0; // Only used in this special case.
if (n->num_keys + neighbor->num_keys >= order) {
split = true;
n_end = cut(order) - 2;
}
for (i = neighbor_insertion_index + 1, j = 0; j < n_end; i++, j++) {
neighbor->keys[i] = n->keys[j];
neighbor->pointers[i] = n->pointers[j];
neighbor->num_keys++;
n->num_keys--;
n_start++;
}
/*The number of pointers is always
*one more than the number of keys.
*/
neighbor->pointers[i] = n->pointers[j];
/*If the nodes are still split, remove the first key from
*n.
*/
if (split) {
new_k_prime = n->keys[n_start];
for (i = 0, j = n_start + 1; i < n->num_keys; i++, j++) {
n->keys[i] = n->keys[j];
n->pointers[i] = n->pointers[j];
}
n->pointers[i] = n->pointers[j];
n->num_keys--;
}
/*All children must now point up to the same parent.
*/
for (i = 0; i < neighbor->num_keys + 1; i++) {
tmp = (node *)neighbor->pointers[i];
tmp->parent = neighbor;
}
}
/*In a leaf, append the keys and pointers of
*n to the neighbor.
*Set the neighbor's last pointer to point to
*what had been n's right neighbor.
*/
else {
for (i = neighbor_insertion_index, j = 0; j < n->num_keys; i++, j++) {
neighbor->keys[i] = n->keys[j];
neighbor->pointers[i] = n->pointers[j];
neighbor->num_keys++;
}
neighbor->pointers[order - 1] = n->pointers[order - 1];
}
if (!split) {
root = delete_entry(root, n->parent, k_prime, n);
free(n->keys);
free(n->pointers);
free(n);
}
else
for (i = 0; i < n->parent->num_keys; i++)
if (n->parent->pointers[i + 1] == n) {
n->parent->keys[i] = new_k_prime;
break;
}
return root;
}
/*Redistributes entries between two nodes when
*one has become too small after deletion
*but its neighbor is too big to append the
*small node's entries without exceeding the
*maximum
*/
node *redistribute_nodes(node *root, node *n, node *neighbor, int neighbor_index,
int k_prime_index, int k_prime)
{
register int i;
node *tmp;
/*Case: n has a neighbor to the left.
*Pull the neighbor's last key-pointer pair over
*from the neighbor's right end to n's left end.
*/
if (neighbor_index != -1) {
if (!n->is_leaf)
n->pointers[n->num_keys + 1] = n->pointers[n->num_keys];
for (i = n->num_keys; i > 0; i--) {
n->keys[i] = n->keys[i - 1];
n->pointers[i] = n->pointers[i - 1];
}
if (!n->is_leaf) {
n->pointers[0] = neighbor->pointers[neighbor->num_keys];
tmp = (node *)n->pointers[0];
tmp->parent = n;
neighbor->pointers[neighbor->num_keys] = NULL;
n->keys[0] = k_prime;
n->parent->keys[k_prime_index] = neighbor->keys[neighbor->num_keys - 1];
}
else {
n->pointers[0] = neighbor->pointers[neighbor->num_keys - 1];
neighbor->pointers[neighbor->num_keys - 1] = NULL;