-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path16. Validate Binary Search Tree.cpp
55 lines (46 loc) · 1.39 KB
/
16. Validate Binary Search Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
Validate Binary Search Tree
===========================
Given the root of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3]
Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
The number of nodes in the tree is in the range [1, 104].
-231 <= Node.val <= 231 - 1
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
bool isValidBST(TreeNode *root)
{
return check(root, LONG_MIN, LONG_MAX);
}
bool check(TreeNode *root, long min, long max)
{
if (!root)
return true;
if (root->val <= min || root->val >= max)
return false;
return check(root->left, min, root->val) && check(root->right, root->val, max);
}
};