-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path18. Increasing Triplet Subsequence.cpp
59 lines (48 loc) · 1.24 KB
/
18. Increasing Triplet Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
Increasing Triplet Subsequence
==============================
Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.
Example 1:
Input: nums = [1,2,3,4,5]
Output: true
Explanation: Any triplet where i < j < k is valid.
Example 2:
Input: nums = [5,4,3,2,1]
Output: false
Explanation: No triplet exists.
Example 3:
Input: nums = [2,1,5,0,4,6]
Output: true
Explanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
Follow up: Could you implement a solution that runs in O(n) time complexity and O(1) space complexity?
*/
class Solution
{
public:
bool increasingTriplet(vector<int> &nums)
{
int n = nums.size();
vector<int> mi(n, 0), ma(n, 0);
int curr = INT_MAX;
for (int i = 0; i < n; ++i)
{
curr = min(curr, nums[i]);
mi[i] = curr;
}
curr = INT_MIN;
for (int i = n - 1; i >= 0; --i)
{
curr = max(curr, nums[i]);
ma[i] = curr;
}
for (int i = 0; i < n; ++i)
{
if (mi[i] < nums[i] && nums[i] < ma[i])
return true;
}
return false;
}
};