-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path22. Balanced Binary Tree.cpp
56 lines (48 loc) · 1.26 KB
/
22. Balanced Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
Balanced Binary Tree
====================
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: true
Example 2:
Input: root = [1,2,2,3,3,null,null,4,4]
Output: false
Example 3:
Input: root = []
Output: true
Constraints:
The number of nodes in the tree is in the range [0, 5000].
-104 <= Node.val <= 104
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
int height(TreeNode *root)
{
if (!root)
return 0;
auto left = height(root->left);
auto right = height(root->right);
return max(left, right) + 1;
}
public:
bool isBalanced(TreeNode *root)
{
if (!root)
return true;
return isBalanced(root->left) && isBalanced(root->right) && abs(height(root->left) - height(root->right)) <= 1;
}
};