-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path29. Pseudo-Palindromic Paths in a Binary Tree.cpp
93 lines (78 loc) · 2.72 KB
/
29. Pseudo-Palindromic Paths in a Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
Pseudo-Palindromic Paths in a Binary Tree
=========================================
Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.
Return the number of pseudo-palindromic paths going from the root node to leaf nodes.
Example 1:
Input: root = [2,3,1,3,1,null,1]
Output: 2
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).
Example 2:
Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).
Example 3:
Input: root = [9]
Output: 1
Constraints:
The given binary tree will have between 1 and 10^5 nodes.
Node values are digits from 1 to 9.
Hint #1
Note that the node values of a path form a palindrome if at most one digit has an odd frequency (parity).
Hint #2
Use a Depth First Search (DFS) keeping the frequency (parity) of the digits. Once you are in a leaf node check if at most one digit has an odd frequency (parity).
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
bool palendrome(vector<int> &arr)
{
int one = 0;
for (int i = 1; i < 10; ++i)
{
if (arr[i] % 2 != 0)
{
if (one == 0)
one = 1;
else
return false;
}
}
return true;
}
int dfs(TreeNode *root, vector<int> arr)
{
if (!root)
return 0;
if (!root->left && !root->right)
{
arr[root->val]++;
if (palendrome(arr))
return 1;
return 0;
}
int ans = 0;
arr[root->val]++;
if (root->left)
ans += dfs(root->left, arr);
if (root->right)
ans += dfs(root->right, arr);
return ans;
}
public:
int pseudoPalindromicPaths(TreeNode *root)
{
vector<int> arr(10, 0);
return dfs(root, arr);
}
};