-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy path18. Max Number of K-Sum Pairs.cpp
63 lines (53 loc) · 1.5 KB
/
18. Max Number of K-Sum Pairs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
Max Number of K-Sum Pairs
=========================
You are given an integer array nums and an integer k.
In one operation, you can pick two numbers from the array whose sum equals k and remove them from the array.
Return the maximum number of operations you can perform on the array.
Example 1:
Input: nums = [1,2,3,4], k = 5
Output: 2
Explanation: Starting with nums = [1,2,3,4]:
- Remove numbers 1 and 4, then nums = [2,3]
- Remove numbers 2 and 3, then nums = []
There are no more pairs that sum up to 5, hence a total of 2 operations.
Example 2:
Input: nums = [3,1,3,4,3], k = 6
Output: 1
Explanation: Starting with nums = [3,1,3,4,3]:
- Remove the first two 3's, then nums = [1,4,3]
There are no more pairs that sum up to 6, hence a total of 1 operation.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= k <= 109
Hint #1
The abstract problem asks to count the number of disjoint pairs with a given sum k.
Hint #2
For each possible value x, it can be paired up with k - x.
Hint #3
The number of such pairs equals to min(count(x), count(k-x)), unless that x = k / 2, where the number of such pairs will be floor(count(x) / 2).
*/
class Solution
{
public:
int maxOperations(vector<int> &nums, int k)
{
sort(nums.begin(), nums.end());
int i = 0, j = nums.size() - 1, ans = 0;
while (i < j)
{
if (nums[i] + nums[j] == k)
{
ans++;
i++;
j--;
}
else if (nums[i] + nums[j] > k)
j--;
else
i++;
}
return ans;
}
};