-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy path08. Binary Tree Tilt.cpp
104 lines (85 loc) · 2.85 KB
/
08. Binary Tree Tilt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/*
Binary Tree Tilt
================
Given the root of a binary tree, return the sum of every tree node's tilt.
The tilt of a tree node is the absolute difference between the sum of all left subtree node values and all right subtree node values. If a node does not have a left child, then the sum of the left subtree node values is treated as 0. The rule is similar if there the node does not have a right child.
Example 1:
Input: root = [1,2,3]
Output: 1
Explanation:
Tilt of node 2 : |0-0| = 0 (no children)
Tilt of node 3 : |0-0| = 0 (no children)
Tile of node 1 : |2-3| = 1 (left subtree is just left child, so sum is 2; right subtree is just right child, so sum is 3)
Sum of every tilt : 0 + 0 + 1 = 1
Example 2:
Input: root = [4,2,9,3,5,null,7]
Output: 15
Explanation:
Tilt of node 3 : |0-0| = 0 (no children)
Tilt of node 5 : |0-0| = 0 (no children)
Tilt of node 7 : |0-0| = 0 (no children)
Tilt of node 2 : |3-5| = 2 (left subtree is just left child, so sum is 3; right subtree is just right child, so sum is 5)
Tilt of node 9 : |0-7| = 7 (no left child, so sum is 0; right subtree is just right child, so sum is 7)
Tilt of node 4 : |(3+5+2)-(9+7)| = |10-16| = 6 (left subtree values are 3, 5, and 2, which sums to 10; right subtree values are 9 and 7, which sums to 16)
Sum of every tilt : 0 + 0 + 0 + 2 + 7 + 6 = 15
Example 3:
Input: root = [21,7,14,1,1,2,2,3,3]
Output: 9
Constraints:
The number of nodes in the tree is in the range [0, 104].
-1000 <= Node.val <= 1000
Hint #1
Don't think too much, this is an easy problem. Take some small tree as an example.
Hint #2
Can a parent node use the values of its child nodes? How will you implement it?
Hint #3
May be recursion and tree traversal can help you in implementing.
Hint #4
What about postorder traversal, using values of left and right childs?
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
int treeSum(TreeNode *root)
{
if (!root)
return 0;
int ans = root->val;
if (root->left)
ans += treeSum(root->left);
if (root->right)
ans += treeSum(root->right);
return ans;
}
void findTilt(TreeNode *root, int &ans)
{
if (!root)
return;
int lVal = root->left ? treeSum(root->left) : 0;
int rVal = root->right ? treeSum(root->right) : 0;
int newVal = abs(lVal - rVal);
root->val = newVal;
ans += newVal;
if (root->left)
findTilt(root->left, ans);
if (root->right)
findTilt(root->right, ans);
}
public:
int findTilt(TreeNode *root)
{
int ans = 0;
findTilt(root, ans);
return ans;
}
};