-
Notifications
You must be signed in to change notification settings - Fork 523
/
Copy path20. Clone Graph.cpp
125 lines (95 loc) · 2.86 KB
/
20. Clone Graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*
Clone Graph
===========
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
Test case format:
For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.
Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Example 4:
Input: adjList = [[2],[1]]
Output: [[2],[1]]
Constraints:
1 <= Node.val <= 100
Node.val is unique for each node.
Number of Nodes will not exceed 100.
There is no repeated edges and no self-loops in the graph.
The Graph is connected and all nodes can be visited starting from the given node.
*/
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> neighbors;
Node() {
val = 0;
neighbors = vector<Node*>();
}
Node(int _val) {
val = _val;
neighbors = vector<Node*>();
}
Node(int _val, vector<Node*> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/
class Solution
{
public:
Node *cloneGraph(Node *src)
{
if (!src)
return NULL;
map<Node *, Node *> m;
queue<Node *> q;
q.push(src);
Node *node;
node = new Node();
node->val = src->val;
m[src] = node;
while (!q.empty())
{
Node *u = q.front();
q.pop();
vector<Node *> v = u->neighbors;
int n = v.size();
for (int i = 0; i < n; i++)
{
if (m[v[i]] == NULL)
{
node = new Node();
node->val = v[i]->val;
m[v[i]] = node;
q.push(v[i]);
}
m[u]->neighbors.push_back(m[v[i]]);
}
}
return m[src];
}
};