-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path5. Climbing Stairs.cpp
45 lines (38 loc) · 929 Bytes
/
5. Climbing Stairs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Constraints:
1 <= n <= 45
*/
// Fastest solution using Fast Fibonacci technique (O(log n))
class Solution {
public:
unordered_map <int,int> F;
int f(int n)
{
if (F.find(n) != F.end()) return F[n];
int k = (n>>1);
if (n&1)
return F[n] = (f(k-1)*f(k) + f(k)*f(k+1));
else
return F[n] = (f(k-1)*f(k-1) + f(k)*f(k));
}
int climbStairs(int n)
{
F[0] = F[1] = 1;
return f(n);
}
};