-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy path15. Longest Turbulent Subarray.cpp
54 lines (41 loc) · 1.33 KB
/
15. Longest Turbulent Subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Longest Turbulent Subarray
==========================
Given an integer array arr, return the length of a maximum size turbulent subarray of arr.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]] of arr is said to be turbulent if and only if:
For i <= k < j:
arr[k] > arr[k + 1] when k is odd, and
arr[k] < arr[k + 1] when k is even.
Or, for i <= k < j:
arr[k] > arr[k + 1] when k is even, and
arr[k] < arr[k + 1] when k is odd.
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16]
Output: 2
Example 3:
Input: arr = [100]
Output: 1
Constraints:
1 <= arr.length <= 4 * 104
0 <= arr[i] <= 109
*/
class Solution {
public:
int maxTurbulenceSize(vector<int>& arr) {
int n = arr.size();
// dp[i] -> { current is lesser than prev, current is bigger than prev }
vector<vector<int>> dp(n, vector<int> (2, 1));
int ans = 1;
for(int i = 1; i < n; ++i) {
if(arr[i] < arr[i-1]) dp[i][0] = 1 + dp[i-1][1];
if(arr[i] > arr[i-1]) dp[i][1] = 1 + dp[i-1][0];
ans = max({ans, dp[i][0], dp[i][1]});
}
return ans;
}
};