-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy pathConvert Sorted Array to Binary Search Tree.cpp
55 lines (45 loc) · 1.42 KB
/
Convert Sorted Array to Binary Search Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
Convert Sorted Array to Binary Search Tree
==========================================
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
TreeNode *constructBalancedBST(vector<int> &nums, int left, int right)
{
if (left > right)
return NULL;
int mid = left + (right - left) / 2;
TreeNode *current = new TreeNode(nums[mid]);
current->left = constructBalancedBST(nums, left, mid - 1);
current->right = constructBalancedBST(nums, mid + 1, right);
return current;
}
public:
TreeNode *sortedArrayToBST(vector<int> &nums)
{
if (!nums.size())
return NULL;
return constructBalancedBST(nums, 0, nums.size() - 1);
}
};