-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy pathMin Stack.cpp
99 lines (82 loc) · 1.64 KB
/
Min Stack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*
Min Stack
=========
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
push(x) -- Push element x onto stack.
pop() -- Removes the element on top of the stack.
top() -- Get the top element.
getMin() -- Retrieve the minimum element in the stack.
Example 1:
Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
Output
[null,null,null,null,-3,null,0,-2]
Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2
Constraints:
Methods pop, top and getMin operations will always be called on non-empty stacks.
Hint #1
Consider each node in the stack having a minimum value. (Credits to @aakarshmadhavan)
*/
class MinStack
{
stack<int> s1, s2;
public:
/** initialize your data structure here. */
MinStack()
{
}
void push(int x)
{
if (s1.empty())
{
s1.push(x);
s2.push(x);
}
else
{
int curr_min = s2.top();
s1.push(x);
if (curr_min > x)
s2.push(x);
else
s2.push(curr_min);
}
}
void pop()
{
if (s1.size())
{
s1.pop();
s2.pop();
}
}
int top()
{
if (s1.size())
return s1.top();
return -1;
}
int getMin()
{
if (s1.size())
return s2.top();
return -1;
}
};
/**
* Your MinStack object will be instantiated and called as such:
* MinStack* obj = new MinStack();
* obj->push(x);
* obj->pop();
* int param_3 = obj->top();
* int param_4 = obj->getMin();
*/