-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy path4Sum.cpp
67 lines (59 loc) · 1.46 KB
/
4Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
4Sum
====
Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
0 <= a, b, c, d < n
a, b, c, and d are distinct.
nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0
Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8
Output: [[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
*/
class Solution
{
public:
vector<vector<int>> fourSum(vector<int> &nums, int target)
{
int n = nums.size();
sort(nums.begin(), nums.end());
vector<vector<int>> ans;
for (int i = 0; i < n - 3; ++i)
{
for (int j = i + 1; j < n - 2; ++j)
{
int tar = target - nums[j] - nums[i];
int k = j + 1, l = n - 1;
while (k < l)
{
if (nums[k] + nums[l] == tar)
{
ans.push_back({nums[i], nums[j], nums[k], nums[l]});
while (k < l && nums[k] == nums[k + 1])
k++;
while (k < l && nums[l] == nums[l - 1])
l--;
k++;
l--;
}
else if (nums[k] + nums[l] < tar)
k++;
else
l--;
}
while (j < n - 2 && nums[j] == nums[j + 1])
j++;
}
while (i < n - 3 && nums[i] == nums[i + 1])
i++;
}
return ans;
}
};