-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.Rhistory
512 lines (512 loc) · 20.5 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence)
cor(activities_tidy$vo2max, activities_tidy$Avg.Pace)
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence)
# Some Correlations
cor(activities_tidy$vo2max, activities_tidy$Avg.HR)
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(mapping = aes(Avg.HR, vo2max)) +
geom_point() +
geom_smooth()
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(mapping = aes(Avg.Cadence, vo2max)) +
geom_point() +
geom_smooth()
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence)
# We can use Correlogram to look at this
nums <- sapply(activities_tidy, is.numeric)
corr <- round(cor(activities_tidy[,nums]), 1)
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
# Plot: Ground Contact Time
activities_tidy %>%
ggplot(aes(Date, Avg.Ground.Contact.Time)) +
geom_point(aes(color = Avg.Cadence)) +
geom_smooth()
# Plot: VO2 Max improvement over Time
# precise definition is the maximum volume of oxygen (in millilitres) you can consume per minute per kilogram of body weight at max performance
activities_tidy %>%
ggplot(mapping = aes(Date, vo2max)) +
geom_point() +
geom_smooth()
# Plot: Max HR over Time
activities_tidy %>%
ggplot(mapping = aes(Date, Max.HR)) +
geom_point() +
geom_smooth()
# Plot: Vertical Oscillation over Time
activities_tidy %>%
ggplot(mapping = aes(Date, Avg.Vertical.Oscillation)) +
geom_point() +
geom_smooth()
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence)
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence, na.rm = T)
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence, use = "complete.obs")
corr <- round(cor(activities_tidy[,nums], use = "complete.obs"), 1)
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
View(corr)
cor(activities_tidy$vo2max, activities_tidy$Avg.Cadence, use = "pairwise.complete.obs")
corr <- round(cor(activities_tidy[,nums], use = "pairwise.complete.obs"), 1)
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
cor_pmat(corr)
cor_pmat(round(cor(activities_tidy[,nums], use = "pairwise.complete.obs"), 1))
ggcorrplot(corr, hc.order = TRUE, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
corr <- round(cor(activities_tidy[,nums], use = "pairwise.complete.obs"), 1)
ggcorrplot(corr, hc.order = TRUE, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
View(activities_tidy)
# review the structure
str(activities_raw[1:5,])
# frequency distribution
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(aes(vo2max, y = ..density.., color = Activity.Type)) +
geom_freqpoly()
View(activities_raw)
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# five number summary
# fivenum(activities_raw$`Avg Ground Contact Time`)
summary(activities_raw[5:10,])
# five number summary
# fivenum(activities_raw$`Avg Ground Contact Time`)
summary(activities_raw[,5:10])
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# import the file, overriding "TIme" upon import, otherwise it will be set to col_type Time and values lost
activities_raw <- read_csv("Activities_Master.csv",
col_types = cols(
Date = col_datetime(format = "%d/%m/%Y %H:%M"),
Time = col_character(),
`Avg Pace` = col_time(format = "%M:%S")
),
na = "--")
# some useful readr functions:
# spec(activities_raw) # review parsed column formats
# problems(activities_raw) # review problems during parsing
# activities_raw # review the final "tibble"
# remove spaces from field names
names(activities_raw) <- make.names(names(activities_raw))
# some basic information (rows and columns)
dim(activities_raw)
# five number summary
# fivenum(activities_raw$`Avg Ground Contact Time`)
summary(activities_raw[,5:10])
# remove blank columns
activities_raw <- select(activities_raw, 1:20)
# review the structure
str(activities_raw[1:5,])
# let's have a look at the first 5 rows of data
head(activities_raw)
# similarly, the last 5 rows of data
tail(activities_raw)
# counts - table with means?
table(activities_raw$Activity.Type) # I guess i'm not a cyclist
# check for blanks and n/a
# missing data as % of dataset (think where that's referenced)
# Separate "Time" into component parts - converting to integers
activities_tidy <- separate(activities_raw, Time, into = (c("minute", "second", "centisecond")), convert = TRUE)
# Calculate total minutes, if first character is less than 5, treat as an hour unit, else, assume it's in minutes
activities_tidy$tot_mins <- ifelse((activities_tidy$minute < 5),
activities_tidy$minute * 60 + activities_tidy$second,
activities_tidy$minute)
# group elevation gain into categorical variables "high" and "low"
activities_tidy$gain <- ifelse(activities_tidy$Elev.Gain > 250, "high", "low")
# Bin the time series values to weeks and months: https://www.r-bloggers.com/plot-weekly-or-monthly-totals-in-r/
activities_tidy$week <- as.Date(cut(activities_tidy$Date, breaks = "week"))
activities_tidy$month <- as.Date(cut(activities_tidy$Date, breaks = "month"))
# Gauge
#activities_tidy$cadence_gauge <- activities_tidy %>%
# if (`Avg Cadence` > 183) {return("purple")}
# Calculate #VO2 Max
# calculate meters per minute
activities_tidy$mpm <- (activities_tidy$Distance*1000)/activities_tidy$tot_mins
# calculate VO2
activities_tidy$vo2 <- -4.6+0.182*activities_tidy$mpm+0.000104*activities_tidy$mpm^2
# calculate % VO2 Max
activities_tidy$percentVO2 <- (activities_tidy$Avg.HR/activities_tidy$Max.HR -0.37)/0.64
# calculate VO2 Max
activities_tidy$vo2max <- activities_tidy$vo2/activities_tidy$percentVO2
View(activities_tidy)
# check for blanks and n/a
x0 <- activities_raw$Avg.Pace
class(x0)
str(x0)
summary(x0)
View(activities_raw)
# check for blanks and n/a
x0 <- activities_raw$Avg.Cadence
class(x0)
str(x0)
summary(x0)
mean(is.na(x0))
is.na(activities_raw)
mean(is.na(activities_raw))
activities_raw[1]
dim(activities_raw[1])
dim(activities_raw[,1])
dim(activities_raw[1,])
dim(activities_raw)
x <- dim(activities_raw)
x
x[1]
dim(activities_raw)[1] * dim(activities_raw)[2])
dim(activities_raw)[1] * dim(activities_raw)[2]
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# import the file, overriding "TIme" upon import, otherwise it will be set to col_type Time and values lost
activities_raw <- read_csv("Activities_Master.csv",
col_types = cols(
Date = col_datetime(format = "%d/%m/%Y %H:%M"),
Time = col_character(),
`Avg Pace` = col_time(format = "%M:%S")
),
na = "--")
# some useful readr functions:
# spec(activities_raw) # review parsed column formats
# problems(activities_raw) # review problems during parsing
# activities_raw # review the final "tibble"
# remove spaces from field names
names(activities_raw) <- make.names(names(activities_raw))
# some basic information (rows and columns)
dim(activities_raw)
# five number summary
# fivenum(activities_raw$`Avg Ground Contact Time`)
summary(activities_raw[,5:10])
# remove blank columns
activities_raw <- select(activities_raw, 1:20)
# review the structure
str(activities_raw[1:5,])
# let's have a look at the first 5 rows of data
head(activities_raw)
# similarly, the last 5 rows of data
tail(activities_raw)
# counts - table with means?
table(activities_raw$Activity.Type) # I guess i'm not a cyclist
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
select(activities_raw, rowSums(is.na(activities_raw))>0)
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
select(activities_raw, is.na(Var2))
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
select(activities_raw, is.na(activities_raw))
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
select(activities_raw, is.na())
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_raw, is.na())
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_raw, is.na(activities_raw))
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_raw, is.na(activities_raw$Avg.Cadence))
# counts - table with means?
table(activities_raw$Activity.Type) # I guess i'm not a cyclist
# Separate "Time" into component parts - converting to integers
activities_tidy <- separate(activities_raw, Time, into = (c("minute", "second", "centisecond")), convert = TRUE)
# Calculate total minutes, if first character is less than 5, treat as an hour unit, else, assume it's in minutes
activities_tidy$tot_mins <- ifelse((activities_tidy$minute < 5),
activities_tidy$minute * 60 + activities_tidy$second,
activities_tidy$minute)
# group elevation gain into categorical variables "high" and "low"
activities_tidy$gain <- ifelse(activities_tidy$Elev.Gain > 250, "high", "low")
# Bin the time series values to weeks and months: https://www.r-bloggers.com/plot-weekly-or-monthly-totals-in-r/
activities_tidy$week <- as.Date(cut(activities_tidy$Date, breaks = "week"))
activities_tidy$month <- as.Date(cut(activities_tidy$Date, breaks = "month"))
# Gauge
#activities_tidy$cadence_gauge <- activities_tidy %>%
# if (`Avg Cadence` > 183) {return("purple")}
# Calculate #VO2 Max
# calculate meters per minute
activities_tidy$mpm <- (activities_tidy$Distance*1000)/activities_tidy$tot_mins
# calculate VO2
activities_tidy$vo2 <- -4.6+0.182*activities_tidy$mpm+0.000104*activities_tidy$mpm^2
# calculate % VO2 Max
activities_tidy$percentVO2 <- (activities_tidy$Avg.HR/activities_tidy$Max.HR -0.37)/0.64
# calculate VO2 Max
activities_tidy$vo2max <- activities_tidy$vo2/activities_tidy$percentVO2
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_raw, is.na(activities_raw$Avg.Cadence))
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_tidy, is.na(activities_tidy$Avg.Cadence))
View(activities_tidy)
# outliers
sd(activities_tidy$vo2max)
# We can use Correlogram to look at this
nums <- sapply(activities_tidy, is.numeric)
corr <- round(cor(activities_tidy[,nums], use = "pairwise.complete.obs"), 1)
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
# scatter plot for all variables
# scatter plot for all variables
pairs(activities_tidy[,nums])
?plotmatrix
library(ggplot2)
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# frequency distribution
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# import the file, overriding "TIme" upon import, otherwise it will be set to col_type Time and values lost
activities_raw <- read_csv("Activities_Master.csv",
col_types = cols(
Date = col_datetime(format = "%d/%m/%Y %H:%M"),
Time = col_character(),
`Avg Pace` = col_time(format = "%M:%S")
),
na = "--")
# some useful readr functions:
# spec(activities_raw) # review parsed column formats
# problems(activities_raw) # review problems during parsing
# activities_raw # review the final "tibble"
# remove spaces from field names
names(activities_raw) <- make.names(names(activities_raw))
# some basic information (rows and columns)
dim(activities_raw)
# five number summary
# fivenum(activities_raw$`Avg Ground Contact Time`)
summary(activities_raw[,5:10])
# remove blank columns
activities_raw <- select(activities_raw, 1:20)
# review the structure
str(activities_raw[1:5,])
# let's have a look at the first 5 rows of data
head(activities_raw)
# similarly, the last 5 rows of data
tail(activities_raw)
# counts - table with means?
table(activities_raw$Activity.Type) # I guess i'm not a cyclist
# Separate "Time" into component parts - converting to integers
activities_tidy <- separate(activities_raw, Time, into = (c("minute", "second", "centisecond")), convert = TRUE)
# Calculate total minutes, if first character is less than 5, treat as an hour unit, else, assume it's in minutes
activities_tidy$tot_mins <- ifelse((activities_tidy$minute < 5),
activities_tidy$minute * 60 + activities_tidy$second,
activities_tidy$minute)
# group elevation gain into categorical variables "high" and "low"
activities_tidy$gain <- ifelse(activities_tidy$Elev.Gain > 250, "high", "low")
# Bin the time series values to weeks and months: https://www.r-bloggers.com/plot-weekly-or-monthly-totals-in-r/
activities_tidy$week <- as.Date(cut(activities_tidy$Date, breaks = "week"))
activities_tidy$month <- as.Date(cut(activities_tidy$Date, breaks = "month"))
# Gauge
#activities_tidy$cadence_gauge <- activities_tidy %>%
# if (`Avg Cadence` > 183) {return("purple")}
# Calculate #VO2 Max
# calculate meters per minute
activities_tidy$mpm <- (activities_tidy$Distance*1000)/activities_tidy$tot_mins
# calculate VO2
activities_tidy$vo2 <- -4.6+0.182*activities_tidy$mpm+0.000104*activities_tidy$mpm^2
# calculate % VO2 Max
activities_tidy$percentVO2 <- (activities_tidy$Avg.HR/activities_tidy$Max.HR -0.37)/0.64
# calculate VO2 Max
activities_tidy$vo2max <- activities_tidy$vo2/activities_tidy$percentVO2
# check for blanks and n/a
# x0 <- activities_raw$Avg.Cadence
# class(x0)
# str(x0)
# summary(x0) # we can see we have some NA's
# mean(is.na(x0)) # is that missing data a problem?
# mean(is.na(activities_raw))
filter(activities_tidy, is.na(activities_tidy$Avg.Cadence))
# outliers
# normalize VO2 Max
# standard deviation ranges
# sd(activities_tidy$vo2max)
# frequency distribution
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(vo2max, y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "track running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "trail running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "track_running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 10)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 1)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 30)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly()
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 0.1)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(vo2max, y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 0.1)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 0.1)
vo2max
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(vo2max, y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 0.1)
# frequency distribution
activities_tidy %>%
filter(Activity.Type == "running") %>%
ggplot(aes(log(vo2max), y = ..density.., color = Activity.Type)) + # note: y has been set to density instead of count
geom_freqpoly(binwidth = 0.1)
activities_tidy %>%
filter(Activity.Type != "cycling") %>%
ggplot(mapping = aes(Avg.Pace, vo2max)) +
geom_point() +
geom_smooth()
# We can use Correlogram to look at this
nums <- sapply(activities_tidy, is.numeric)
corr <- round(cor(activities_tidy[,nums], use = "pairwise.complete.obs"), 1)
ggcorrplot(corr, lab = T, lab_size = 3, method = "circle", colors = c("tomato2", "white", "springgreen3"))
# scatter plot for all numeric variables
pairs(activities_tidy[,nums])
# load libraries and prerequisites
library(tidyverse)
library(ggcorrplot)
# import the file, overriding "TIme" upon import, otherwise it will be set to col_type Time and values lost
activities_raw <- read_csv("Activities_Master.csv",
col_types = cols(
Date = col_datetime(format = "%d/%m/%Y %H:%M"),
Time = col_character(),
`Avg Pace` = col_time(format = "%M:%S")
),
na = "--")
# some useful readr functions:
# spec(activities_raw) # review parsed column formats
# problems(activities_raw) # review problems during parsing
# activities_raw # review the final "tibble"
# remove spaces from field names
names(activities_raw) <- make.names(names(activities_raw))
View(activities_raw)