|
1 | 1 | import numpy as np
|
2 | 2 | import matplotlib.pyplot as plt
|
3 | 3 | import pandas as pd
|
4 |
| -from scanpy.plotting import embedding |
5 |
| -from scanpy.tools import tsne, pca |
| 4 | +import seaborn as sns |
| 5 | +import matplotlib.colors |
| 6 | +import matplotlib.backends.backend_pdf |
6 | 7 |
|
7 | 8 | import matplotlib.colors
|
8 | 9 |
|
|
11 | 12 | from matplotlib import gridspec
|
12 | 13 | from ._plot_helper_functions import *
|
13 | 14 | from scipy.stats import gaussian_kde
|
| 15 | +from scanpy.tools import umap |
| 16 | +from scanpy.preprocessing import neighbors |
14 | 17 |
|
15 | 18 |
|
16 | 19 | def plot_2D_scatters(
|
@@ -396,4 +399,132 @@ def FlowSOMmary(fsom, plot_file="./FlowSOMmary.pdf"):
|
396 | 399 | :param plot_file: File name of the plot
|
397 | 400 | :type plot_file: str
|
398 | 401 | """
|
399 |
| - pass |
| 402 | + # Initializing |
| 403 | + metacluster_present = "cluster_data" in fsom.mudata.mod.keys() |
| 404 | + if metacluster_present: |
| 405 | + mfis = fsom.get_cluster_data().uns["metacluster_MFIs"] |
| 406 | + metaclusters = fsom.get_cell_data().obs["metaclustering"] |
| 407 | + n_metaclusters = fsom.get_cell_data().uns["n_metaclusters"] |
| 408 | + clusters = fsom.get_cell_data().obs["clustering"] |
| 409 | + n_clusters = np.arange(fsom.get_cell_data().uns["n_nodes"]) |
| 410 | + file_present = False |
| 411 | + plot_dict = dict() |
| 412 | + |
| 413 | + # Plot fsom trees and grids |
| 414 | + for view in ["MST", "grid"]: |
| 415 | + if metacluster_present: |
| 416 | + plot_dict["stars_" + view] = plot_stars( |
| 417 | + fsom, |
| 418 | + background_values=fsom.get_cluster_data().obs.metaclustering, |
| 419 | + title="FlowSOM " + view, |
| 420 | + view=view, |
| 421 | + ) |
| 422 | + |
| 423 | + plot_dict["mcl_labels_" + view] = plot_variable( |
| 424 | + fsom, |
| 425 | + variable=fsom.get_cluster_data().obs.metaclustering, |
| 426 | + equal_node_size=True, |
| 427 | + view=view, |
| 428 | + labels=fsom.get_cluster_data().obs.metaclustering, |
| 429 | + cmap=gg_color_hue(), |
| 430 | + title="FlowSOM Metaclusters", |
| 431 | + ) |
| 432 | + |
| 433 | + plot_dict["cl_labels_" + view] = plot_variable( |
| 434 | + fsom, |
| 435 | + variable=fsom.get_cluster_data().obs.metaclustering, |
| 436 | + equal_node_size=True, |
| 437 | + view=view, |
| 438 | + labels=np.arange(fsom.get_cell_data().uns["n_nodes"]), |
| 439 | + cmap=gg_color_hue(), |
| 440 | + title="FlowSOM Clusters", |
| 441 | + ) |
| 442 | + else: |
| 443 | + plot_dict["stars_" + view] = plot_stars(fsom, title="FlowSOM" + view, view=view) |
| 444 | + plot_dict["labels_" + view] = plot_numbers(fsom, view=view, title="FlowSOM Clusters", equal_node_size=True) |
| 445 | + |
| 446 | + # Plot Markers |
| 447 | + ref_markers_bool = fsom.get_cell_data().var["cols_used"] |
| 448 | + ref_markers = fsom.get_cell_data().var_names[ref_markers_bool] |
| 449 | + for marker in ref_markers: |
| 450 | + plot_dict["marker_" + marker] = plot_marker( |
| 451 | + fsom, |
| 452 | + [marker], |
| 453 | + ref_markers=ref_markers, |
| 454 | + equal_node_size=True, |
| 455 | + title=list(get_markers(fsom, [marker]).keys())[0], |
| 456 | + ) |
| 457 | + |
| 458 | + # File distribution |
| 459 | + if file_present: |
| 460 | + pass |
| 461 | + |
| 462 | + # t-SNE |
| 463 | + subset_fsom = fsom.get_cell_data()[ |
| 464 | + np.random.choice(range(fsom.get_cell_data().shape[0]), 5000, replace=False), |
| 465 | + fsom.get_cell_data().var_names[ref_markers_bool], |
| 466 | + ] |
| 467 | + subset_fsom |
| 468 | + neighbors(subset_fsom) |
| 469 | + umap(subset_fsom) |
| 470 | + |
| 471 | + for marker in ref_markers: |
| 472 | + fig, ax = plt.subplots() |
| 473 | + ax.scatter( |
| 474 | + x=subset_fsom.obsm["X_umap"][:, 0], |
| 475 | + y=subset_fsom.obsm["X_umap"][:, 1], |
| 476 | + c=subset_fsom.to_df().loc[:, marker], |
| 477 | + ) |
| 478 | + ax.set_title("UMAP: " + list(get_markers(fsom, [marker]).keys())[0]) |
| 479 | + plot_dict["umap_" + marker] = fig |
| 480 | + if metacluster_present: |
| 481 | + subset_fsom.obs["metaclustering"] = subset_fsom.obs["metaclustering"].astype(str) |
| 482 | + colors = { |
| 483 | + i: j |
| 484 | + for i, j in zip( |
| 485 | + np.unique(subset_fsom.obs["metaclustering"]), |
| 486 | + gg_color_hue()(np.linspace(0, 1, n_metaclusters)), |
| 487 | + ) |
| 488 | + } |
| 489 | + fig, ax = plt.subplots() |
| 490 | + ax.scatter( |
| 491 | + x=subset_fsom.obsm["X_umap"][:, 0], |
| 492 | + y=subset_fsom.obsm["X_umap"][:, 1], |
| 493 | + c=subset_fsom.obs["metaclustering"].map(colors), |
| 494 | + ) |
| 495 | + ax.set_title("UMAP: metaclustering") |
| 496 | + plot_dict["umap_metaclustering"] = fig |
| 497 | + |
| 498 | + # Heatmap |
| 499 | + data_heatmap = fsom.get_cluster_data().uns["metacluster_MFIs"] |
| 500 | + data_heatmap.columns = fsom.get_cluster_data().var_names |
| 501 | + data_heatmap_subset = data_heatmap.loc[:, fsom.get_cell_data().var.cols_used.to_list()] |
| 502 | + plot_dict["heatmap"] = sns.clustermap(data_heatmap_subset, z_score=1, annot=data_heatmap_subset, cbar=True).fig |
| 503 | + |
| 504 | + # Tables |
| 505 | + table1 = pd.DataFrame( |
| 506 | + { |
| 507 | + "Total number of cells": [fsom.get_cell_data().shape[0]], |
| 508 | + "Total number of metaclusters": [n_metaclusters], |
| 509 | + "Total number of clusters": len(n_clusters), |
| 510 | + "Markers used for FlowSOM": ", ".join( |
| 511 | + fsom.get_cell_data().var["pretty_colnames"][ref_markers_bool].to_list() |
| 512 | + ), |
| 513 | + } |
| 514 | + ).transpose() |
| 515 | + fig, ax = plt.subplots(1, 1) |
| 516 | + ax.axis("tight") |
| 517 | + ax.axis("off") |
| 518 | + ax.table( |
| 519 | + cellText=table1.values, |
| 520 | + rowLabels=table1.index, |
| 521 | + colLabels=["FlowSOMmary"], |
| 522 | + loc="center", |
| 523 | + ) |
| 524 | + plot_dict["table1"] = fig |
| 525 | + |
| 526 | + # Plot |
| 527 | + pdf = matplotlib.backends.backend_pdf.PdfPages(plot_file) |
| 528 | + for fig in plot_dict.keys(): |
| 529 | + pdf.savefig(plot_dict[fig]) |
| 530 | + pdf.close() |
0 commit comments