|
464 | 464 | ],
|
465 | 465 | "source": [
|
466 | 466 | "# Visualize data\n",
|
467 |
| - "ax = plt.hist2d(ff_t[:,\"CD4\"].X.flatten(), ff_t[:,\"CD8\"].X.flatten(), bins=200, cmin = 1, cmap = \"jet\")\n", |
| 467 | + "ax = plt.hist2d(ff_t[:, \"CD4\"].X.flatten(), ff_t[:, \"CD8\"].X.flatten(), bins=200, cmin=1, cmap=\"jet\")\n", |
468 | 468 | "plt.show()"
|
469 | 469 | ]
|
470 | 470 | },
|
|
520 | 520 | }
|
521 | 521 | ],
|
522 | 522 | "source": [
|
523 |
| - "fsom = fs.FlowSOM(ff_t, cols_to_use, xdim = 10, ydim = 10, n_clus = 10)\n", |
| 523 | + "fsom = fs.FlowSOM(ff_t, cols_to_use, xdim=10, ydim=10, n_clus=10)\n", |
524 | 524 | "fsom.mudata"
|
525 | 525 | ]
|
526 | 526 | },
|
|
555 | 555 | }
|
556 | 556 | ],
|
557 | 557 | "source": [
|
558 |
| - "ff_clustered = fs.flowsom_clustering(ff_t, cols_to_use, xdim = 10, ydim = 10, n_clus = 10)\n", |
| 558 | + "ff_clustered = fs.flowsom_clustering(ff_t, cols_to_use, xdim=10, ydim=10, n_clus=10)\n", |
559 | 559 | "ff_clustered"
|
560 | 560 | ]
|
561 | 561 | },
|
|
666 | 666 | }
|
667 | 667 | ],
|
668 | 668 | "source": [
|
669 |
| - "p = fs.pl.plot_stars(fsom, background_values = fsom.get_cluster_data().obs.metaclustering)\n", |
670 |
| - "p" |
| 669 | + "p = fs.pl.plot_stars(fsom, background_values=fsom.get_cluster_data().obs.metaclustering)\n", |
| 670 | + "p.show()" |
671 | 671 | ]
|
672 | 672 | },
|
673 | 673 | {
|
|
706 | 706 | }
|
707 | 707 | ],
|
708 | 708 | "source": [
|
709 |
| - "p = fs.pl.plot_stars(fsom, background_values = fsom.get_cluster_data().obs.metaclustering, view = \"grid\", equal_node_size = True, equal_background_size = True)\n", |
| 709 | + "p = fs.pl.plot_stars(\n", |
| 710 | + " fsom,\n", |
| 711 | + " background_values=fsom.get_cluster_data().obs.metaclustering,\n", |
| 712 | + " view=\"grid\",\n", |
| 713 | + " equal_node_size=True,\n", |
| 714 | + " equal_background_size=True,\n", |
| 715 | + ")\n", |
710 | 716 | "p"
|
711 | 717 | ]
|
712 | 718 | },
|
|
736 | 742 | ],
|
737 | 743 | "source": [
|
738 | 744 | "# Read in that data\n",
|
739 |
| - "file = open(\"../../tests/data/gating_result.csv\", \"r\")\n", |
| 745 | + "file = open(\"../../tests/data/gating_result.csv\")\n", |
740 | 746 | "data = csv.reader(file)\n",
|
741 | 747 | "data = [i[0] for i in data]\n",
|
742 | 748 | "\n",
|
743 | 749 | "# Plot\n",
|
744 |
| - "p = fs.pl.plot_pies(fsom, data, background_values = fsom.get_cluster_data().obs.metaclustering)" |
| 750 | + "p = fs.pl.plot_pies(fsom, data, background_values=fsom.get_cluster_data().obs.metaclustering)" |
745 | 751 | ]
|
746 | 752 | },
|
747 | 753 | {
|
|
771 | 777 | }
|
772 | 778 | ],
|
773 | 779 | "source": [
|
774 |
| - "p = fs.pl.plot_numbers(fsom, level = \"clusters\", text_size = 5)" |
| 780 | + "p = fs.pl.plot_numbers(fsom, level=\"clusters\", text_size=5)" |
775 | 781 | ]
|
776 | 782 | },
|
777 | 783 | {
|
|
800 | 806 | }
|
801 | 807 | ],
|
802 | 808 | "source": [
|
803 |
| - "p = fs.pl.plot_marker(fsom, marker = np.array([\"CD3\"]))" |
| 809 | + "p = fs.pl.plot_marker(fsom, marker=np.array([\"CD3\"]))" |
804 | 810 | ]
|
805 | 811 | },
|
806 | 812 | {
|
|
840 | 846 | ],
|
841 | 847 | "source": [
|
842 | 848 | "p = fs.pl.plot_2D_scatters(\n",
|
843 |
| - " fsom,\n", |
844 |
| - " channelpairs=[[\"CD3\", \"CD4\"], [\"CD19\", \"TCRb\"]],\n", |
845 |
| - " clusters=[[1, 2], [3]],\n", |
846 |
| - " metaclusters=[[4], [5, 6]],\n", |
847 |
| - " density=True,\n", |
848 |
| - " centers=True,\n", |
849 |
| - " )\n", |
850 |
| - "p" |
| 849 | + " fsom,\n", |
| 850 | + " channelpairs=[[\"CD3\", \"CD4\"], [\"CD19\", \"TCRb\"]],\n", |
| 851 | + " clusters=[[1, 2], [3]],\n", |
| 852 | + " metaclusters=[[4], [5, 6]],\n", |
| 853 | + " density=True,\n", |
| 854 | + " centers=True,\n", |
| 855 | + ")\n", |
| 856 | + "p.show()" |
851 | 857 | ]
|
852 | 858 | },
|
853 | 859 | {
|
|
960 | 966 | }
|
961 | 967 | ],
|
962 | 968 | "source": [
|
963 |
| - "features = fs.tl.get_features(fsom, files=[ff_t[1:1000, :], ff_t[1000:2000, :]], level = [\"clusters\", \"metaclusters\"], type = [\"counts\", \"percentages\"])\n", |
| 969 | + "features = fs.tl.get_features(\n", |
| 970 | + " fsom,\n", |
| 971 | + " files=[ff_t[1:1000, :], ff_t[1000:2000, :]],\n", |
| 972 | + " level=[\"clusters\", \"metaclusters\"],\n", |
| 973 | + " type=[\"counts\", \"percentages\"],\n", |
| 974 | + ")\n", |
964 | 975 | "features[\"metacluster_percentages\"]"
|
965 | 976 | ]
|
966 | 977 | },
|
|
1075 | 1086 | }
|
1076 | 1087 | ],
|
1077 | 1088 | "source": [
|
1078 |
| - "fs.tl.get_counts(fsom, level = \"clusters\")" |
| 1089 | + "fs.tl.get_counts(fsom, level=\"clusters\")" |
1079 | 1090 | ]
|
1080 | 1091 | },
|
1081 | 1092 | {
|
|
1244 | 1255 | }
|
1245 | 1256 | ],
|
1246 | 1257 | "source": [
|
1247 |
| - "fs.pp.aggregate_flowframes(filenames = [\"../../tests/data/not_preprocessed.fcs\", \"../../tests/data/not_preprocessed.fcs\"], c_total = 5000)" |
| 1258 | + "fs.pp.aggregate_flowframes(\n", |
| 1259 | + " filenames=[\"../../tests/data/not_preprocessed.fcs\", \"../../tests/data/not_preprocessed.fcs\"], c_total=5000\n", |
| 1260 | + ")" |
1248 | 1261 | ]
|
1249 | 1262 | },
|
1250 | 1263 | {
|
|
1301 | 1314 | ],
|
1302 | 1315 | "source": [
|
1303 | 1316 | "fsom_new = fsom.new_data(ff_t[1:200, :])\n",
|
1304 |
| - "fs.pl.plot_stars(fsom_new, background_values = fsom_new.get_cluster_data().obs.metaclustering)" |
| 1317 | + "fs.pl.plot_stars(fsom_new, background_values=fsom_new.get_cluster_data().obs.metaclustering)" |
1305 | 1318 | ]
|
1306 | 1319 | },
|
1307 | 1320 | {
|
|
1350 | 1363 | ],
|
1351 | 1364 | "source": [
|
1352 | 1365 | "fsom_subset = fsom.subset(fsom.get_cell_data().obs[\"metaclustering\"] == 4)\n",
|
1353 |
| - "fs.pl.plot_stars(fsom_subset, background_values = fsom_subset.get_cluster_data().obs.metaclustering)" |
| 1366 | + "fs.pl.plot_stars(fsom_subset, background_values=fsom_subset.get_cluster_data().obs.metaclustering)" |
1354 | 1367 | ]
|
1355 | 1368 | }
|
1356 | 1369 | ],
|
|
0 commit comments