-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_mutual_information.m
119 lines (112 loc) · 4.86 KB
/
compute_mutual_information.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function [I pxy px py edges_x edges_y nxy nx ny] = compute_mutual_information(x, y, x_partition_type, Lx, y_partition_type, Ly)
% function [I pxy px py edges_x edges_y nxy nx ny] = compute_mutual_information(x, y, x_partition_type, Lx, y_partition_type, Ly)
%
% Computes the mutual information between time series x and time series y
% using a uniform partition of the x-y plane to Lx*Ly bins.
% The bins are of unequal sizes, so that the number of elements in every bin is roughly
% equal (equal entropy).
%
% INPUTS:
% x : [array] of length N
% y : [array] of length N
% x_partition_type: [string] 'uniform' : uniform marginal distibutions by using varying bin widths
% 'equal_bins' : divide x to Lx bins of equal widths
% 'unique' : count unique values (doesn't use Lx)
% Lx: [int] number of bins, Lx <= N
% y_partition_type: [string] 'uniform' : uniform marginal distibutions by using varying bin widths
% 'equal_bins' : divide y to Ly bins of equal widths
% 'unique' : count unique values (doesn't use Ly)
% Ly: [int] number of bins, Ly <= N
%
% OUTPUTS:
% I : [double] mutual information: I(X,Y) = sum_over_x( sum_over_y ( p(x,y)* log2( p(x,y)/ (p(x)*p(y)) ) ) )
% pxy:
% px :
% py :
% edges_x:
% edges_y:
%
% Sagi Perel, 09/2012
if(nargin < 6 || nargin > 6)
error('compute_mutual_information: wrong number if input arguments provided');
end
if(~isvector(x))
error('compute_mutual_information: x must be a vector');
end
N = length(x);
if(~isvector(y))
error('compute_mutual_information: y must be a vector');
elseif(length(y)~=N)
error('compute_mutual_information: length(x)~=length(y)');
end
if(~exist('x_partition_type','var') || isempty(x_partition_type))
x_partition_type = 'uniform';
elseif(~ischar(x_partition_type))
error('compute_mutual_information: x_partition_type must be a string');
elseif(~any(strcmp(x_partition_type,{'uniform','equal_bins','unique'})))
error('compute_mutual_information: unknown value for x_partition_type');
end
if(~strcmp(x_partition_type,'unique')) % x_partition_type,'unique' does not use Lx
if(~isscalar(Lx))
error('compute_mutual_information: Lx must be a scalar');
elseif(Lx>N)
error('compute_mutual_information: Lx > N');
end
end
if(~exist('y_partition_type','var') || isempty(y_partition_type))
y_partition_type = 'uniform';
elseif(~ischar(y_partition_type))
error('compute_mutual_information: y_partition_type must be a string');
elseif(~any(strcmp(y_partition_type,{'uniform','equal_bins','unique'})))
error('compute_mutual_information: unknown value for y_partition_type');
end
if(~strcmp(y_partition_type,'unique')) % y_partition_type,'unique' does not use Ly
if(~isscalar(Ly))
error('compute_mutual_information: Ly must be a scalar');
elseif(Ly>N)
error('compute_mutual_information: Ly > N');
end
end
if(all(isnan(x)) || all(isnan(y)))
I = NaN;
pxy = [];
px = [];
py = [];
edges_x = [];
edges_y = [];
return;
end
% the marginal distributions p(x), p(y) are approximated by histograms
% which divide [min(x) max(x)] and [min(y) max(y)] according to x/y_partition_type
switch(x_partition_type)
case 'uniform'
[edges_x nx] = sp_uniform_hist(x, Lx);
case 'equal_bins'
[edges_x nx] = sp_equal_bins_hist(x, Lx);
case 'unique'
[edges_x nx] = sp_unique_hist(x);
otherwise
error('compute_mutual_information: unknown value for x_partition_type');
end
switch(y_partition_type)
case 'uniform'
[edges_y ny] = sp_uniform_hist(y, Ly);
case 'equal_bins'
[edges_y ny] = sp_equal_bins_hist(y, Ly);
case 'unique'
[edges_y ny] = sp_unique_hist(y);
otherwise
error('compute_mutual_information: unknown value for y_partition_type');
end
px = nx/sum(nx);
py = ny/sum(ny);
% estimate the joint probability p(x,y)
[nxy edges_x edges_y] = sp_joint_hist(x, y, x_partition_type, Lx, y_partition_type, Ly);
pxy = nxy./sum(nxy(:)); % [Lx x Ly]
% compute the mutual information:
% I(X,Y) = sum_over_x( sum_over_y ( p(x,y)* log2( p(x,y)/ (p(x)*p(y)) ) ) )
px_py = make_column_vector(px)*make_row_vector(py); % [Lx x Ly]
% don't include zero values
lidx = px_py(:)>0 & pxy(:)>0; % logical vector with length [Lx * Ly]
% compute the sum over all x
I = sum( pxy(lidx) .* ( log2(pxy(lidx)) - log2(px_py(lidx)) ) );